沪科版9年级下册期末试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、下列图形中,既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
2、如图,是的直径,弦,垂足为,若,则()
A.5 B.8 C.9 D.10
3、下面四个立体图形中,从正面看是三角形的是()
A. B. C. D.
4、如图,几何体的左视图是()
A. B. C. D.
5、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积()
A.不变 B.面积扩大为原来的3倍
C.面积扩大为原来的9倍 D.面积缩小为原来的
6、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为()
A.64° B.52° C.42° D.36°
7、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()
A. B. C. D.
8、如图是由5个相同的小正方体搭成的几何体,它的左视图是().
A. B. C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
2、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).
3、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.
4、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红—黑的概率是________.
5、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:
(1)如图(1)已知,,点P在BC边所在的直线l上移动,小方发现AP的最小值是______;
(2)如图(2)在直角中,,,,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.
6、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.
7、小明和小强玩“石头、剪刀、布”游戏,按照“石头胜剪刀,剪刀胜布,布胜石头,相同算平局”的规则,两人随机出手一次,平局的概率为______.
三、解答题(7小题,每小题0分,共计0分)
1、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.
2、解题与遐想.
如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=4,BD=5.求Rt△ABC的面积.
王小明:这道题算出来面积刚好是20,太凑巧了吧.刚好是4×5=20,有种白算的感觉…
赵丽华:我把4和5换成m、n再算一遍,△ABC的面积总是m?n!确实非常神奇了…
数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?
霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了.我怎么想不出来呢?
计算验证
(1)通过计算求出Rt△ABC的面积.
拼图演绎
(2)将Rt△ABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明.
尺规作图
(3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个Rt△ABC,使它的内切圆与斜边AB相切于点D.(保留作图的痕迹,写出必要的文字说明)
3、如图,是由若干个完全相同的小正方体组成的一个几何体.从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.
4、为了引导青少年学党史,某中学举行了“献礼建党百年”党史知识竞赛活动,将成绩划分为四个等级:A(优秀)、B(优良)、C(合格)、D(不合格).小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(部分信息未给出):
(1)小李共抽取了名