沪科版9年级下册期末测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、已知菱形ABCD的对角线交于原点O,点A的坐标为,点B的坐标为,则点D的坐标是()
A. B. C. D.
2、如图是由5个相同的小正方体搭成的几何体,它的左视图是().
A. B. C. D.
3、如图,A,B,C是正方形网格中的三个格点,则是()
A.优弧 B.劣弧 C.半圆 D.无法判断
4、如图是下列哪个立体图形的主视图()
A. B.
C. D.
5、下列事件是确定事件的是()
A.方程有实数根 B.买一张体育彩票中大奖
C.抛掷一枚硬币正面朝上 D.上海明天下雨
6、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为()
A.64° B.52° C.42° D.36°
7、下列关于随机事件的概率描述正确的是()
A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”
B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖
C.随机事件发生的概率大于或等于0,小于或等于1
D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率
8、下列事件为随机事件的是()
A.四个人分成三组,恰有一组有两个人 B.购买一张福利彩票,恰好中奖
C.在一个只装有白球的盒子里摸出了红球 D.掷一次骰子,向上一面的点数小于7
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.
2、如图,中,,,,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是____________.
3、如图,已知⊙O的半径为2,弦AB的长度为2,点C是⊙O上一动点若△ABC为等腰三角形,则BC2为_______.
4、已知如图,AB=8,AC=4,∠BAC=60°,BC所在圆的圆心是点O,∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为____________.
5、如图,、分别与相切于A、B两点,若,则的度数为________.
6、如图,正三角形ABC的边长为,D、E、F分别为BC,CA,AB的中点,以A,B,C三点为圆心,长为半径作圆,图中阴影部分面积为______.
7、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.
三、解答题(7小题,每小题0分,共计0分)
1、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)
(1)画出关于原点对称的图形,并写出点的坐标;
(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;
(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)
2、在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,?ABC的平分线交图形G于点D,连接AD,CD.求证:AD=CD.
3、一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4随机摸取一个小球后,不放回,再随机摸出一个小球,分别求下列事件的概率:
(1)两次取出的小球标号和为奇数;
(2)两次取出的小球标号和为偶数.
4、如图,内接于,BC是的直径,D是AC延长线上一点.
(1)请用尺规完成基本作图:作出的角平分线交于点P.(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,过点P作,垂足为E.则PE与有怎样的位置关系?请说明理由.
5、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.
6、在中,,,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.
(1)如图1,点E在点B的左侧运动.
①当,时,则___________°;
②猜想线段CA,CF与CE之间的数量关系为