江苏省南京市2025年中考数学第一次综合模拟考试考前热身练习卷
(考试时间:120分钟;总分:120分)
学校:姓名:班级:考号:
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写清楚
2.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。
3.回答解答题时,每题必须给出必要的演算过程或推理步骤,用2B铅笔作图画出必要的线条与图形(包括辅助线),请将解答过程书写在试卷中中对应的位置上
4.测试范围:苏科版(2012)全册
5.难度系数:0.7。
一、选择题(本大题共6小题,每小题2分,共12分.)
1.地球平均半径约等于6400000米,6400000用科学记数法表示为()
A.64×105 B.6.4×105 C.6.4×106 D.6.4×107
2.当为正整数时,代数式一定是下面哪个数的倍数(????)
A.3 B.5 C.7 D.8
3.改变数据,,,中的某个数字的值后,新数据的下列统计量,与原数据相比,一定发生变化的是(????)
A.平均数 B.中位数 C.众数 D.极差
4.若,是一元二次方程的两根,则的值是(????)
A.13 B. C.14 D.
5.如图,在四边形中,分别与扇形相切于点.若,则的长为(???)
A.8 B. C. D.9
6.已知反比例函数在第一象限内的图象与一次函数的图象如图所示,则函数的图象可能为(???)
B.C.D.
二、填空题(本大题共10小题,每小题2分,共20分.)
7.分解因式:.
8.计算的结果是.
9.已知圆锥的底面半径为3,母线长为12,则其侧面展开扇形的圆心角的度数为°.
10.如图,点在同一条直线上,是的平分线,是的平分线.若,则.
11.一组由7个整数组成的数据:9,4,,7,,5,10,它们的中位数与众数相同,则满足条件的值共有个.
12.二次函数的部分对应值如下表:
x
…
0
1
3
5
…
y
…
7
0
7
…
则二次函数在时,.
13.如图,在中,,,,点E是上一动点,将沿折叠得到,当点恰好落在上时,的长为.
14.如图,半圆O中,C为半圆O上一点,AB为直径,∠ABC=60°,以OA为直径作半圆D,若AB=4,则图中阴影部分的面积为.
15.反比例函数的图象如图所示,若点在该图象上,则的最小值是.
16.如图,在菱形中,,,点P是边上一个动点,在延长线上找一点Q,使得点P和点Q关于点C对称,连接交于点M.当点P从B点运动到C点时,点M的运动路径长为.
三、解答题(本大题共11小题,共88分.)
17.计算.
18.先化简,再求值:,从,1,2,3中选择一个合适的数代入并求值.
19.如图所示,在矩形中,对角线的垂直平分线分别交于点,连接.
(1)求证:四边形是菱形;
(2)若,,求菱形的面积.
20.春节以来,很多电影都给我们留下深刻的印象.小卓和小越分别想从“哪吒之魔童闹海”“唐探1900”“封神之战火西岐”“熊出没”四部电影中的随机选一部观看.将“哪吒之魔童闹海”“唐探1900”“封神之战火西岐”“熊出没”四部电影分别记作A,B,C,D.
(1)请你求出他们选中同一部影片的概率为多少?
(2)若小卓和小越分别观看了两场电影,则他们观看的两场电影都相同的概率是.
21.某校准备开展“行走的课堂,生动的教育”研学活动,并计划从博物馆、动物园、植物园、海洋馆(依次用字母A,B,C,D表示)中选择一处作为研学地点.为了解学生的选择意向,学校随机抽取部分学生进行调查,整理绘制了如下不完整的条形统计图和扇形统计图.
根据以上信息,解答下列问题:
(1)补全条形统计图;扇形统计图中A所对应的圆心角的度数为______°;
(2)该校共有1600名学生,请你估计该校有多少名学生想去海洋馆;
(3)根据以上数据,学校最终将海洋馆作为研学地点,研学后,学校从八年级各班分别随机抽取10名学生开展海洋知识竞赛.甲班10名学生的成绩(单位:分)分别是:75,80,80,82,83,85,90,90,90,95;乙班10名学生的成绩.(单位:分)的平均数、中位数、众数分别是:84,83,88.根据以上数据判断______班的竞赛成绩更好.(填“甲”或“乙”)
22.如图,为了测量无人机的飞行高度,在水平地面上选择观测点A,B.无人机悬停在C处,此时在A处测得C的仰角为无人机垂直上升悬停在D处,此时在B处测得D的仰角为点A,B,C,D在同一平面内,A,B两点在的同侧.求无