基本信息
文件名称:二次函数与几何综合类存在性问题_-.ppt
文件大小:1.37 MB
总页数:25 页
更新时间:2025-05-17
总字数:约2.58千字
文档摘要

关于二次函数与几何综合类存在性问题_-第1页,共25页,星期日,2025年,2月5日二次函数与三角形、四边形和相似三角形常常综合在一起运用,解决这类问题需要用到数形结合思想,把“数”与“形”结合起来,互相渗透.存在探索型问题是指在给定条件下,判断某种数学现象是否存在、某个结论是否出现的问题.解决这类问题的一般思路是先假设结论的某一方面存在,然后在这个假设下进行演绎推理,若推出矛盾,即可否定假设;若推出合理结论,则可肯定假设.第2页,共25页,星期日,2025年,2月5日考向互动探究探究一二次函数与三角形的结合例1[2013·重庆]如图1,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴的交点为A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.第3页,共25页,星期日,2025年,2月5日图1例题分层分析(1)抛物线的解析式未知,不能通过解方程的方法确定点B的坐标,根据二次函数的对称性,能求出B点的坐标吗?(2)要求抛物线解析式应具备哪些条件?由a=1,A(-3,0),B(1,0)三个条件试一试;(3)根据S△POC=4S△BOC列出关于x的方程,解方程求出x的值;(4)如何用待定系数法求出直线AC的解析式?(5)D点的坐标怎么用x来表示?(6)QD怎样用含x的代数式来表示?(7)QD与x的函数关系如何?是二次函数吗?如何求出最大值?第4页,共25页,星期日,2025年,2月5日第5页,共25页,星期日,2025年,2月5日第6页,共25页,星期日,2025年,2月5日解题方法点析以二次函数、三角形为背景的有关点存在性问题是以二次函数的图象和解析式为背景,判断三角形满足某些的条件时,点是否存在的问题,这类问题有点的对称点、线段、三角形等类型之分.这类试题集代数、几何知识于一体,数形结合,灵活多变.第7页,共25页,星期日,2025年,2月5日(中考.广安)如图,已知抛物线y=-x2+2x+3交x轴于A、B两点(点A在点B的左侧),与y轴交于点C。(1)求点A、B、C的坐标。(2)若点M为抛物线的顶点,连接BC、CM、BM,求△BCM的面积。(3)连接AC,在x轴上是否存在点P使△ACP为等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由。巩固练习第8页,共25页,星期日,2025年,2月5日探究二二次函数与四边形的结合例2[2013·枣庄]如图2,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于C(0,-3),点P是直线BC下方抛物线上的动点.(1)求这个二次函数的解析式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.第9页,共25页,星期日,2025年,2月5日例题分层分析(1)图中已知抛物线上几个点?将B、C的坐标代入求抛物线的解析式;(2)画出四边形POP′C,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,由此能求出P点坐标吗?(3)由于△ABC的面积为定值,求四边形ABPC的最大面积,即求△BPC的最大面积.第10页,共25页,星期日,2025年,2月5日第11页,共25页,星期日,2025年,2月5日第12页,共25页,星期日,2025年,2月5日第13页,共25页,星期日,2025年,2月5日解题方法点析求四边形面积的函数关系式,一般是利用割补法把四边形面积转化为三角形面积的和或差.第14页,共25页,星期日,2025年,2月5日(2010?黔东南州)如图,在平面直角坐标系中Rt△AOB≌Rt△CDA,且A(-1,0),B(0,2)抛物线y=ax2+ax-2经过点C.

(1)求抛物线的解析式;

(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ为正方形?若存在,求点P、Q的坐标;若不存在,请说明理由.巩固练习第15页,共25页,星期日,2025年,2月5日探究三二次函数与相似三角形的结合例3[2013·凉山]如图3,抛物线y=ax2-2ax+c(a≠0)交