关于函数的奇偶性(3)第1页,共20页,星期日,2025年,2月5日第2页,共20页,星期日,2025年,2月5日第3页,共20页,星期日,2025年,2月5日第4页,共20页,星期日,2025年,2月5日第5页,共20页,星期日,2025年,2月5日xy0第6页,共20页,星期日,2025年,2月5日1.3.2函数的奇偶性第7页,共20页,星期日,2025年,2月5日观察下图,思考并讨论以下问题:(1)这两个函数图象有什么共同特征吗?(2)相应的两个函数值对应表是如何体现这些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)=|x|实际上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x),这时我们称函数y=x2为偶函数.第8页,共20页,星期日,2025年,2月5日1.偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.例如,函数都是偶函数,它们的图象分别如下图(1)、(2)所示.第9页,共20页,星期日,2025年,2月5日观察函数f(x)=x和f(x)=1/x的图象(下图),你能发现两个函数图象有什么共同特征吗?f(-3)=-3=-f(3)f(-2)=-2=-f(2)f(-1)=-1=-f(1)实际上,对于R内任意的一个x,都有f(-x)=-x=-f(x),这时我们称函数y=x为奇函数.f(-3)=-1/3=-f(3)f(-2)=-1/2=-f(2)f(-1)=-1=-f(1)第10页,共20页,星期日,2025年,2月5日2.奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)就叫做奇函数.注意:1、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;2、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).第11页,共20页,星期日,2025年,2月5日3、奇、偶函数定义的逆命题也成立,即若f(x)为奇函数,则f(-x)=-f(x)有成立.若f(x)为偶函数,则f(-x)=f(x)有成立.4、如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性.第12页,共20页,星期日,2025年,2月5日例5、判断下列函数的奇偶性:(1)解:定义域为R ∵f(-x)=(-x)4=f(x)即f(-x)=f(x)∴f(x)偶函数(2)解:定义域为R f(-x)=(-x)5=-x5=-f(x)即f(-x)=-f(x)∴f(x)奇函数(3)解:定义域为{x|x≠0} ∵f(-x)=-x+1/(-x)=-f(x)即f(-x)=-f(x)∴f(x)奇函数(4)解:定义域为{x|x≠0} ∵f(-x)=1/(-x)2=f(x)即f(-x)=f(x)∴f(x)偶函数第13页,共20页,星期日,2025年,2月5日3.用定义判断函数奇偶性的步骤:(1)、先求定义域,看是否关于原点对称;(2)、再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立.第14页,共20页,星期日,2025年,2月5日