第10节实验:测定电池的电动势和内阻
一、实验目的
1.知道伏安法测量电源电动势和内阻的实验原理,进一步理解电源路端电压随电流变化的关系。
2.学会根据图像合理外推进行数据处理的方法。
3.尝试进行电源电动势和内电阻测量误差的分析,了解测量中减小误差的办法。
二、实验原理
图2-10-1
实验电路如图2-10-1所示,根据闭合电路的欧姆定律,改变R的阻值,测出两组U、I的值,根据闭合电路欧姆定律可列出两个方程:
E=U1+I1r和E=U2+I2r,
联立可解出E、r的值。
三、实验器材
待测电池一节,电流表(0~0.6A)、电压表(0~3V)各一块,滑动变阻器一只,开关一只,导线若干。
图2-10-2
四、实验步骤
1.确定电流表、电压表的量程,按图2-10-2连接好电路,并将滑动变阻器的滑片移到使接入电路的阻值为最大值的一端。
2.闭合开关S,接通电路,将滑动变阻器的滑片由一端向另一端移动,从电流表有明显读数开始,记录一组电流表、电压表读数。
3.同样的方法,依次记录多组U、I值。
4.断开开关S,拆除电路。
5.以U为纵轴,I为横轴,将记录的电压、电流标在坐标图上,过这些点作一条直线,根据纵轴截距求出电动势,根据斜率大小求出内电阻。
五、数据处理
为减小测量误差,本实验常选用以下两种数据处理方法:
1.公式法
利用依次记录的多组数据(一般6组),分别记录如表所示:
实验序号
1
2
3
4
5
6
I/A
I1
I2
I3
I4
I5
I6
U外/V
U1
U2
U3
U4
U5
U6
分别将1、4组,2、5组,3、6组联立方程组解出E1、r1,E2、r2,E3、r3,求出它们的平均值
E=eq\f(E1+E2+E3,3),r=eq\f(r1+r2+r3,3)作为测量结果。
图2-10-3
2.图像法
把测出的多组U、I值,在U-I图中描点画图像,使U-I图像的直线经过大多数坐标点或使各坐标点大致分布在直线的两侧,如图2-10-3所示,由U=E-Ir可知:
(1)纵轴截距等于电源的电动势
E,横轴截距等于外电路短路时的电流Im=eq\f(E,r)。
(2)图线斜率的绝对值等于电源的内阻r=eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(ΔU,ΔI)))=eq\f(E,Im)。
六、误差分析
1.偶然误差
主要来源于电压表和电流表的读数以及作U-I图像时描点不准确。
2.系统误差
由于电压表分流IV,使电流表示数I小于电池的输出电流I真。I真=I+IV,而IV=eq\f(U,RV),U越大,IV越大,它们的关系可用图2-10-4表示。实测的图线为AB,经过IV修正后的图线为A′B,可看出AB的斜率绝对值和在纵轴上的截距都小于A′B,即实测的E和r都小于真实值。
图2-10-4
七、注意事项
1.为使电池的路端电压有明显变化,应选取内阻较大的旧干电池和内阻较大的电压表。
2.实验中不能将电流调得过大,且读数要快,读完后立即切断电源,防止干电池大电流放电时内阻r的明显变化。
3.若干电池的路端电压变化不很明显,作图像时,纵轴单位可取得小一些,且纵轴起点可不从零开始。如图2-10-5所示,此时图线与纵轴交点仍为电池的电动势E,但图线与横轴交点不再是短路电流,内阻要在直线上取较远的两点用r=eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(ΔU,ΔI)))求出。
图2-10-5
4.为了提高测量的精确度,在实验中I、U的变化范围要大一些,计算E、r时,U1和U2、I1和I2的差值要大一些。
八、它案设计
1.用电流表和电阻箱测E、r(又叫安阻法)
图2-10-6
如图2-10-6所示,由E=IR+Ir可知,如果能得到I、R的两组数据,也可以得到关于E和r的两个方程,于是能够从中解出E和r。这样,用电流表、电阻箱也可以测定电源的电动势和内阻。
2.用电压表和电阻箱测E、r(又叫伏阻法)
图2-10-7
如图2-10-7所示,由E=U+eq\f(U,R)·r可知,如果能得到U、R的两组数据,同样能通过解方程组求出E和r。这样,除了以上两个方法外,还可以用电压表、电阻箱来测定电源的电动势和内阻。
[例1](2015·天津高考)用电流表和电压表测定由三节干电池串联组成的电池组(电动势约4.5V,内电阻约1Ω)的电动势和内电阻,除待测电池组、电键、导线外,还有下列器材供选用:
A.电流表:量程0.6A,内电阻约1Ω
B.电流表:量程3A,内电阻约0.2Ω
C.电压表:量程3V,内电阻约30kΩ
D.电压表:量程6V,内电阻约60kΩ
E.滑动变阻器:0~1000Ω,额定电流0.5A
F.滑动变阻器:0~20Ω,额定电流2A
(1)为了使测量结果尽量