京改版数学9年级上册期末测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题26分)
一、单选题(6小题,每小题2分,共计12分)
1、如图,在△ABC中,∠ABC=90°,tan∠BAC=,AD=2,BD=4,连接CD,则CD长的最大值是(???????)
A. B. C. D.2+2
2、如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()
A.55° B.65° C.60° D.75°
3、古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段分为两线段,,使得其中较长的一段是全长与较短的段的比例中项,即满足,后人把这个数称为“黄金分割”数,把点G称为线段的“黄金分割”点.如图,在中,已知,,若D,E是边的两个“黄金分割”点,则的面积为(???????)
A. B. C. D.
4、已知二次函数y=ax2+bx+c,其中a<0,若函数图象与x轴的两个交点均在负半轴,则下列判断错误的是(???????)
A.abc<0 B.b>0 C.c<0 D.b+c<0
5、如图,ABC是等边三角形,点D、E分别在BC、AC上,且∠ADE=60°,AB=9,BD=3,则CE的长等于()
A.1 B. C. D.2
6、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°.类比这种方法,计算tan22.5°的值为()
A. B.﹣1 C. D.
二、多选题(7小题,每小题2分,共计14分)
1、△ABC和△A′B′C′符合下列条件,其中使△ABC和△A′B′C′相似的是(????????)
A.∠A=∠A′=45°,∠B=26°,∠B′=109°
B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3
C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3
D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=
2、如图,抛物线过点,对称轴是直线.下列结论正确的是(???????)
A.
B.
C.若关于x的方程有实数根,则
D.若和是抛物线上的两点,则当时,
3、在△ABC中,∠C=90°,下列各式一定成立的是(??????????)
A.a=b?cosA B.a=c?cosB C.c= D.a=b?tanA
4、下列说法中,不正确的是()
A.三点确定一个圆
B.三角形有且只有一个外接圆
C.圆有且只有一个内接三角形
D.相等的圆心角所对的弧相等
5、如图,在矩形ABCD中,对角线AC、BD相交于G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形中相似的为()
A.△BEA与△ACD B.△FED与△DEB C.△CFD与△ABG D.△ADF与△EFD
6、已知:如图,△ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB、AC于点D、E.连接DE、OE.下列结论中正确的结论是()
A.BC=2DE B.D点到OE的距离不变
C.BD+CE=2DE D.AE为外接圆的切线
7、下列各组图形中相似的是(????????)
A.各有一个角是45°的两个等腰三角形
B.各有一个角是60°的两个等腰三角形
C.各有一个角是105°的两个等腰三角形
D.两个等腰直角三角形
第Ⅱ卷(非选择题74分)
三、填空题(7小题,每小题2分,共计14分)
1、二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.
2、如图,平行四边形ABCD中,,点的坐标是,以点为顶点的抛物线经过轴上的点A,B,则此抛物线的解析式为__________________.
3、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为___.
4、如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为_____.
5、如图,在