华东师大版8年级下册期末试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是()
A.出租车的速度为100千米/小时 B.小南追上小开时距离家300千米
C.小南到达景区时共用时7.5小时 D.家距离景区共400千米
2、如图,在正方形ABCD中,,点E在对角线AC上,若,则CDE的面积为()
A.3 B.4 C.5 D.6
3、在菱形ABCD中,对角线AC,BD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是()
A.6 B.12 C.24 D.48
4、2022年冬季奥运会将在北京市张家口举行,下表记录了四名短道速滑选手几次选拔赛成绩的平均数和方差:
小明
小红
小芳
小米
平均数(单位:秒)
53
m
52
49
方差(单位:秒2)
5.5
n
12.5
17.5
根据表中数据,可以判断小红是这四名选手中成绩最好且发择最稳定的运动员,则m,n的值可以是()A., B.,
C., D.,
5、使分式等于0的x的值是()
A.1 B. C. D.不存在
6、若点P位于平面直角坐标系第四象限,且点P到x轴的距离是1,到y轴的距离是2,则点P的坐标为()
A. B. C. D.
7、矩形ABCD的对角线交于点O,∠AOD=120°,AO=3,则BC的长度是()
A.3 B. C. D.6
8、在平面直角坐标系中,点在
A.第一象限 B.第二象限 C.第三象限 D.第四象限
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、如图所示,是长方形地面,长,宽,中间竖有一堵砖墙高.一只蚂蚱从点爬到点,它必须翻过中间那堵墙,则它至少要走______的路程.
2、平面上的点与坐标(有序实数对)是______的.
3、若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.
4、如图,在矩形中,,点在边上,联结.如果将沿直线翻折,点恰好落在线段上,那么的值为_________.
5、如图,在平面直角坐标系xOy中,直线l1,l2分别是关于x,y的二元一次方程a1x+b1y=c1,a2x+b2y=c2的图象,则二元一次方程组的解为___.
6、已知点(?2,y1),(?1,y2),(1,y3)都在直线y=?x+b上,则y1,y2,y3的值的大小关系是______.
7、原点的坐标为______,第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-),任何一个在x轴上的点的纵坐标都为0,记作______;
任何一个在y轴上的点的横坐标都为0,记作______.
三、解答题(7小题,每小题10分,共计70分)
1、作图题:
(1)如图,已知直线l1∥l2,直线l3分别与l1、l2交于点A、B.请用尺规作图法,在线段AB上求作一点P,使点P到l1、l2的距离相等.(保留作图痕迹,不写作法)
(2)如图,在7×7的正方形网格中,网格线的交点称为格点,点A,B在格点上,每一个小正方形的边长为1.请以AB为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).并计算你所画菱形的面积.
2、某校为进一步开展体育中考训练,购买了一批篮球和排球,已知购买的排球数量是篮球的2倍,购买排球用去了4000元,购买篮球用去了2520元,篮球单价比排球贵26元,求篮球、排球的单价.
3、在平面直角坐标系xOy中,将点到x轴和y轴的距离的较大值定义为点M的“相对轴距”,记为.即:如果,那么;如果,那么.例如:点的“相对轴距”.
(1)点的“相对轴距”______;
(2)请在图1中画出“相对轴距”与点的“相对轴距”相等的点组成的图形;
(3)