冀教版9年级下册期末测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题20分)
一、单选题(10小题,每小题2分,共计20分)
1、下列事件为必然事件的是()
A.购买一张彩票,中奖 B.乘公交车到十字路口,遇到红灯
C.射击运动员射击一次,命中靶心 D.明天太阳从东方升起
2、如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()
A. B.
C. D.
3、对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+4x+c有两个相异的不动点x1,x2,且x1<3<x2,则c的取值范围是()
A.c<﹣6 B.c<﹣18 C.c<﹣8 D.c<﹣11
4、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是()
A.4 B.2 C.6 D.3
5、根据表格对应值:
x
1.1
1.2
1.3
1.4
ax2+bx+c
﹣0.59
0.84
2.29
3.76
判断关于x的方程ax2+bx+c=2的一个解x的范围是()
A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定
6、如图,中,,正方形的顶点、分别在、边上,设的长度为,与正方形重叠部分的面积为,则下列图象中能表示与之间的函数关系的是()
A. B.
C. D.
7、如图是一个正方体的表面展开图,则原正方体中的与“美”字所在的面相对的面上标的字是()
A.东 B.建 C.平 D.丽
8、一个不透明的口袋中有4个红球,2个白球,这些球出颜色外无其他差别,则摸到红球的概率是()
A. B. C. D.
9、一个布袋里装有1个红球,4个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为()
A. B. C. D.
10、如图,已知的内接正六边形的边心距是,则阴影部分的面积是().
A. B. C. D.
第Ⅱ卷(非选择题80分)
二、填空题(10小题,每小题2分,共计20分)
1、身高相同的小颖和小丽,一天晚上,她们站在同一路灯下的不同位置,在灯光的照射下,小颖的投影比小丽的投影长,我们可以判断小颖和小丽离灯光较远的是______.
2、现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4.把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是_____.
3、口袋中有完全相同的白球若干个,为估计口袋中白球的数量,将8个红球放入口袋中(这些球除颜色外与白球完全相同).将口袋中的球搅拌均匀后,从中随机摸出一个球,记下颜色后放回口袋中.不断重复这一过程,通过大量的摸球试验,发现摸到红球的频率稳定在0.25左右,由此可以估计口袋中白球的数量为_____个.
4、将二次函数的图象向左平移1个单位,再向上平移1个单位,得到的新图象函数的表达式为______.
5、若⊙O的半径为3cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是:点A在⊙O_______.(填“上”、“内”、“外”)
6、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.
7、一个不透明的袋子中放有若干个红球,小亮往其中放入10个黑球,并采用以下实验方式估算其数量:每次摸出一个小球记录下颜色并放回,实验数据如下表:
实验次数
100
200
300
400
摸出红球
78
161
238
321
则袋中原有红色小球的个数约为__________个.
8、如图边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、...、An﹣1为OA的n等分点,B1、B2、B3、...、Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、...、An﹣1Bn﹣1,分别交于点C1、C2、C3、...、Cn﹣1.当B25C25=8C25A25时,则n=_____.
9、已知圆O的半径为10cm,OP=8cm,则点P和圆O的位置关