冀教版9年级下册期末测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题20分)
一、单选题(10小题,每小题2分,共计20分)
1、一个布袋里装有1个红球,4个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为()
A. B. C. D.
2、一次函数与二次函数在同一平面直角坐标系中的图象可能是()
A. B.
C. D.
3、若关于的一元二次方程的两根分别为,,则二次函数的对称轴为直线()
A. B. C. D.
4、已知二次函数的图象上有三点,,,则、、的大小关系为()
A. B. C. D.
5、如图,已知的内接正六边形的边心距是,则阴影部分的面积是().
A. B. C. D.
6、二次函数y=-(x+2)#xF032;+1的顶点坐标为()
A.(-2,1) B.(2,1) C.(2,-1) D.(2,-1)
7、如图是正方体的展开图,则与“脱”字所在面相对的面上标的字是()
A.取 B.得 C.胜 D.利
8、在ABC中,∠B=45°,AB=6;①AC=4;②AC=8;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是()
A.① B.② C.③ D.①或③
9、抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x
…
-3
-2
-1
0
1
…
y
…
-6
0
4
6
6
…
给出下列说法:
①抛物线与y轴的交点为(0,6);
②抛物线的对称轴在y轴的右侧;
③抛物线的开口向下;
④抛物线与x轴有且只有1个公共点.
以上说法正确是()
A.① B.①② C.①②③ D.①②③④
10、某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是()
A. B. C. D.
第Ⅱ卷(非选择题80分)
二、填空题(10小题,每小题2分,共计20分)
1、若⊙O的半径为3cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是:点A在⊙O_______.(填“上”、“内”、“外”)
2、明明家过年时包了50个饺子,其中有5个饺子包有幸运果.明明一家人连续吃了10个饺子都没有吃到幸运果,那么明明在剩余的饺子中任意挑选一个饺子,正好是包有幸运果饺子的概率是_____.
3、某农场拟建两间矩形饲养室,一面靠足够长的墙体,中间用一道围栏隔开,并在如图所示的两处各留宽的门,所有围栏的总长(不含门)为,若要使得建成的饲养室面积最大,则利用墙体的长度为______.
4、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.
5、一个不透明的布袋中,装有红、白两种只有颜色不同的小球,其中红色小球有8个,为估计袋中白色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色放回,再次搅匀…100次试验发现摸到红球20次,则估计白色小球的数目是____个.
6、已知二次函数的图象经过点,那么a的值为_____.
7、将二次函数y=﹣x2+2图象向下平移3个单位,得到的函数图象顶点坐标为_____.
8、如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为_______米.(结果保留根号)
9、如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为_____.
10、口袋中有完全相同的白球若干个,为估计口袋中白球的数量,将8个红球放入口袋中(这些球除颜色外与白球完全相同).将口袋中的球搅拌均匀后,从中随机摸出一个球,记下颜色后放回口袋中.不断重复这一过程,通过大量的摸球试验,发现摸到红球的频率稳定在0.25左右,由此可以估计口袋中白球的数量为_____个.
三、解答题(6小题,每小题10分,共计60分)
1、在平面直角坐标系中,抛物线.
(1)求证:抛物线与轴一定有两个交点.
(2)求抛物线顶点