基本信息
文件名称:广东省揭阳市榕城区一中学2024届中考四模数学试题含解析.doc
文件大小:801.5 KB
总页数:23 页
更新时间:2025-05-22
总字数:约1.15万字
文档摘要

广东省揭阳市榕城区一中学2024届中考四模数学试题

考生须知:

1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)

1.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿()

A.20 B.25 C.30 D.35

2.如图1,在等边△ABC中,D是BC的中点,P为AB边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()

A.4 B. C.12 D.

3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()

A.11 B.16 C.17 D.16或17

4.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.

A.3 B.4 C.5 D.6

5.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()

A.7 B. C. D.9

6.若2m﹣n=6,则代数式m-n+1的值为()

A.1 B.2 C.3 D.4

7.下列式子中,与互为有理化因式的是()

A. B. C. D.

8.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()

A. B. C. D.

9.如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()

A.40° B.36° C.50° D.45°

10.若||=-,则一定是()

A.非正数 B.正数 C.非负数 D.负数

11.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是()

A.﹣1 B.±2 C.2 D.﹣2

12.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,所得直线的解析式为()

A.y=x+1B.y=x-1C.y=xD.y=x-2

二、填空题:(本大题共6个小题,每小题4分,共24分.)

13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.

14.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是__.

15.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.

16.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.

17.长城的总长大约为6700000m,将数6700000用科学记数法表示为______

18.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.

三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.

19.(6分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:

T恤

每件的售价/元

每件的成本/元

50

60

(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?

20.(6分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.

(1)如图①,点P在线段OA上,若∠OBQ=