广东省韶关市南雄市2024届中考五模数学试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列计算正确的是()
A.(﹣2a)2=2a2 B.a6÷a3=a2
C.﹣2(a﹣1)=2﹣2a D.a?a2=a2
2.下列命题正确的是()
A.内错角相等B.-1是无理数
C.1的立方根是±1D.两角及一边对应相等的两个三角形全等
3.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为()
A. B. C. D.
4.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()
A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3
5.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是()
A. B.
C. D.
6.下列安全标志图中,是中心对称图形的是()
A. B. C. D.
7.二次函数的最大值为()
A.3 B.4
C.5 D.6
8.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()
A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)
9.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()
A.54°B.36°C.30°D.27°
10.下列四个多项式,能因式分解的是()
A.a-1 B.a2+1
C.x2-4y D.x2-6x+9
二、填空题(共7小题,每小题3分,满分21分)
11.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_____.
12.如果关于x的方程x2+kx+34k2-3k+
13.数据﹣2,0,﹣1,2,5的平均数是_____,中位数是_____.
14.如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC
15.同时掷两粒骰子,都是六点向上的概率是_____.
16.若a+b=5,ab=3,则a2+b2=_____.
17.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.
三、解答题(共7小题,满分69分)
18.(10分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
19.(5分)计算:﹣14﹣2×(﹣3)2+÷(﹣)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.
20.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.
21.(10分)计算:|﹣1|+(﹣1)2018﹣tan60°
22.(10分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:
血型
A
B
AB
O
人数
10
5