广东省韶关市乐昌市重点中学2024年中考数学考试模拟冲刺卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,BD∥AC,BE平分∠ABD,交AC于点E,若∠A=40°,则∠1的度数为()
A.80° B.70° C.60° D.40°
2.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()
A. B. C. D.
3.方程的解为()
A.x=4 B.x=﹣3 C.x=6 D.此方程无解
4.化简÷的结果是()
A. B. C. D.2(x+1)
5.下列因式分解正确的是
A. B.
C. D.
6.计算(-1)×2的结果是()
A.-2 B.-1 C.1 D.2
7.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()
A.7 B. C. D.9
8.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰()
丙
丁
平均数
8
8
方差
1.2
1.8
A.甲 B.乙 C.丙 D.丁
9.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()
A.a+b0 B.ab0 C.1a+
10.下面的图形中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在函数y=xx
12.如图,直线l1∥l2,则∠1+∠2=____.
13.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.
(1)OM的长等于_______;
(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.
14.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE=_____.
15.如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为________.
16.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.
求:△ABD的面积.
18.(8分)已知:如图,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:
(发现)(1)的长度为多少;
(2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.
(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.
(拓展)当与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.
19.(8分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.
求证:△ECG≌△GHD;
20.(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
21.(8分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万