导数应用的习题及答案
姓名:____________________
一、多项选择题(每题2分,共10题)
1.下列函数在区间(0,+∞)上单调递增的是:
A.\(f(x)=x^2-4x+3\)
B.\(f(x)=\frac{1}{x}\)
C.\(f(x)=2^x\)
D.\(f(x)=\log_2x\)
2.函数\(f(x)=\sqrt{x^2+1}\)的导数\(f(x)\)的正负号如何随\(x\)变化?
A.当\(x0\)时,\(f(x)0\)
B.当\(x0\)时,\(f(x)0\)
C.当\(x=0\)时,\(f(x)=0\)
D.当\(x\neq0\)时,\(f(x)\)的符号随\(x\)的正负而改变
3.已知函数\(f(x)=3x^3-6x^2+3x\),则\(f(x)\)的零点个数是:
A.1
B.2
C.3
D.0
4.若函数\(f(x)=\frac{a}{x}+b\)在区间(-∞,0)上单调递增,那么\(a\)和\(b\)的取值范围是:
A.\(a0\)且\(b\)为任意实数
B.\(a0\)且\(b\)为任意实数
C.\(a0\)且\(b0\)
D.\(a0\)且\(b0\)
5.设\(f(x)=\frac{1}{2}x^3-3x^2+4x+1\),则\(f(x)\)的极值点为:
A.\(x=-1\)和\(x=2\)
B.\(x=-1\)和\(x=1\)
C.\(x=1\)和\(x=2\)
D.\(x=-2\)和\(x=1\)
6.若函数\(f(x)=\ln(x^2+1)\)在区间(0,+∞)上单调递减,则\(f(x)\)的值:
A.\(f(x)0\)
B.\(f(x)0\)
C.\(f(x)=0\)
D.\(f(x)\)的符号不定
7.已知函数\(f(x)=e^{2x}\),则\(f(x)\)的值:
A.\(f(x)=2e^{2x}\)
B.\(f(x)=e^{2x}\)
C.\(f(x)=2e^{2x}-1\)
D.\(f(x)=e^{2x}+1\)
8.函数\(f(x)=\frac{1}{x^2+1}\)的导数\(f(x)\)在\(x=0\)处的值是:
A.\(f(0)=0\)
B.\(f(0)\)不存在
C.\(f(0)=1\)
D.\(f(0)=-1\)
9.设\(f(x)=\sqrt{4x+1}\),则\(f(x)\)的值:
A.\(f(x)=\frac{2}{\sqrt{4x+1}}\)
B.\(f(x)=\frac{1}{\sqrt{4x+1}}\)
C.\(f(x)=\frac{2}{\sqrt{4x+1}}+1\)
D.\(f(x)=\frac{1}{\sqrt{4x+1}}+1\)
10.若函数\(f(x)=x^3-3x+1\)在\(x=1\)处取得极大值,则\(f(1)\)的值:
A.\(f(1)=0\)
B.\(f(1)0\)
C.\(f(1)0\)
D.\(f(1)\)的符号不定
二、判断题(每题2分,共10题)
1.函数\(f(x)=x^2\)在其定义域内处处可导。()
2.函数\(f(x)=\sqrt{x}\)在\(x=0\)处不可导。()
3.函数\(f(x)=e^x\)的导数\(f(x)\)等于\(e^x\)本身。()
4.若函数\(f(x)\)在区间\((a,b)\)上可导,则\(f(x)\)在\((a,b)\)上连续。()
5.函数\(f(x)=\ln(x)\)的导数\(f(x)\)等于\(\frac{1}{x}\)。()
6.若函数\(f(x)\)在\(x=a\)处可导,则\(f(