高考数学
导数及其应用大题综合
隐零点问题
1.(2023·全国甲卷·高考真题)已知函数
(1)当时,讨论的单调性;
(2)若恒成立,求a的取值范围.
【答案】(1)答案见解析.
(2)
【分析】(1)求导,然后令,讨论导数的符号即可;
(2)构造,计算的最大值,然后与0比较大小,得出的分界点,再对讨论即可.
【详解】(1)
令,则
则
当
当,即.
当,即.
所以在上单调递增,在上单调递减
(2)设
设
所以.
若,
即在上单调递减,所以.
所以当,符合题意.
若
当,所以.
.
所以,使得,即,使得.
当,即当单调递增.
所以当,不合题意.
综上,的取值范围为.
【点睛】关键点点睛:本题采取了换元,注意复合函数的单调性在定义域内是减函数,若,当,对应当.
2.(2017·全国·高考真题)已知函数且.
(1)求a;
(2)证明:存在唯一的极大值点,且.
【答案】(1)a=1;(2)见解析.
【分析】(1)通过分析可知f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,进而利用h′(x)=a可得h(x)min=h(),从而可得结论;
(2)通过(1)可知f(x)=x2﹣x﹣xlnx,记t(x)=f′(x)=2x﹣2﹣lnx,解不等式可知t(x)min=t()=ln2﹣1<0,从而可知f′(x)=0存在两根x0,x2,利用f(x)必存在唯一极大值点x0及x0可知f(x0),另一方面可知f(x0)>f().
【详解】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),
则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a.
则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,
所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.
因为当0<x时h′(x)<0、当x时h′(x)>0,
所以h(x)min=h(),
又因为h(1)=a﹣a﹣ln1=0,
所以1,解得a=1;
另解:因为f(1)=0,所以f(x)≥0等价于f(x)在x>0时的最小值为f(1),
所以等价于f(x)在x=1处是极小值,
所以解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,
令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2,
令t′(x)=0,解得:x,
所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,
所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,
且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,
所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,
所以f(x0)x0﹣x0lnx0x0+2x0﹣2x0,
由x0可知f(x0)<(x0)max;
由f′()<0可知x0,
所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,
所以f(x0)>f();
综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.
【点睛】本题考查利用导数研究函数的极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.
3.(2016·全国·高考真题)(1)讨论函数的单调性,并证明当0时,
(2)证明:当时,函数有最小值.设g(x)的最小值为,求函数的值域.
【答案】(1)见解析;(2)见解析.
【详解】试题分析:(Ⅰ)先求定义域,用导数法求函数的单调性,当时,证明结论;(Ⅱ)用导数法求函数的最值,再构造新函数,用导数法求解.
试题解析:(Ⅰ)的定义域为.
且仅当时,,所以在单调递增,
因此当时,
所以
(Ⅱ)
由(Ⅰ)知,单调递增,对任意
因此,存在唯一使得即,
当时,单调递减;
当时,单调递增.
因此在处取得最小值,最小值为
于是,由单调递增
所以,由得
因为单调递增,对任意存在唯一的
使得所以的值域是
综上,当时,有最小值,的值域是
【考点】函数的单调性、极值与最值
【名师点睛】求函数单调区间的步骤:
(1)确定函数f(x)的定义域;
(2)求导数f′(x);
(3)由f′(x)>0(f′(x)<0)解出相应的x的范围.
当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0时,f(x)在相应的区间上是减函数,还可以列表,写出函数的单调区间.
注意:求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.
请考生在第22~24题中任选一题作答,如果多做