2024年高考押题预测卷01【天津卷】
数学·参考答案
一、单项选择题(本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1
2
3
4
5
6
7
8
9
A
D
B
C
A
B
B
D
C
二、填空题:本题共6小题,每小题5分,共30分.
10. 11.-560 12. 13.;
14.; 15.
三、解答题:本题共5小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本小题满分14分)
【解】(1)在中,由正弦定理,,,
可得,
因为,所以,即,
显然,解得.
(2)在中,由余弦定理,
得,解得或.
由已知,,互不相等,所以,
所以.
(3)因为,所以,
所以,,
所以.
17.(本小题满分15分)
【解】(1)取中点,连接,如图
由为的中点,所以//且
又,且,
所以//且,
故//且,
所以四变形为平行四边形,故//
又平面,平面
所以//平面
(2)由,平面
平面平面,
平面平面
所以平面,又平面
所以,由,
所以为正三角形,所以
则平面
所以平面,且
所以点到面的距离即
(3)作交于点,
作交于点,连接
由平面平面,平面平面
平面平面,
所以平面,平面,
所以,又
平面,所以平面
又平面,所以
所以二面角平面角为
,又为等腰直角三角形
所以,所以
所以
又二面角平面角为
故
所以二面角平面角的正弦值为
18.(本小题满分15分)
【解】(1)由题设得,解得,,,
所以椭圆的方程为.
(2)由,得,
由,得,
设、,则,,
所以点的横坐标,纵坐标,
所以直线的方程为,
令,则点的纵坐标,则,
因为,所以点、点在原点两侧,
因为,所以,所以,
又因为
,
所以,
解得,所以.
19.(本小题满分15分)
【解】(1),令,则,
令,则;由①,
当时,②,
由①②得,当时,,
所以数列和数列是等比数列.
因为,所以,
所以,因此,
从而,所以数列是“型数列”.
(2)(i)因为数列的各项均为正整数,且为“G型数列”,
所以,所以,因此数列递增.又,
所以,因此递增,
所以公比.又不是“型数列”,所以存在,
使得,所以,又公比为正整数,
所以,又,所以,则.
(ii),
因为,所以,
所以,令,当时,,
当时,
20.(本小题满分16分)
【解】(1),
则,
所以曲线在点处的切线方程为,即;
(2)(i),
,
∵时,取得极值,∴,解得,
∴,
令,得或;令,得,
∴的单调增区间为,,单调减区间为;
(ii),
∵存在两个极值点,
∴方程,即在上有两个不等实根.
∵,解得,
则
∴所证不等式等价于,
即,
不妨设,即证,
令,,
则,
∴在上递增,∴,
∴成立,
∴.