数学高考策略试题及答案详细解析2023
姓名:____________________
一、多项选择题(每题2分,共10题)
1.下列函数中,有最小值的是:
A.\(y=x^2-4x+4\)
B.\(y=-x^2+4x+4\)
C.\(y=x^2-4x\)
D.\(y=-x^2+4x\)
2.已知等差数列\(\{a_n\}\)的第三项为5,第五项为9,求该数列的首项和公差。
3.已知函数\(f(x)=\frac{1}{x}+\ln(x)\)在\((0,+\infty)\)上单调递减,则\(f(x)\)的图像大致是:
A.
B.
C.
D.
4.下列命题中,正确的是:
A.函数\(y=x^3-3x+2\)的图像有2个极值点
B.函数\(y=\frac{1}{x}-\ln(x)\)在\((0,+\infty)\)上单调递增
C.函数\(y=e^x-x\)在\(\mathbb{R}\)上单调递增
D.函数\(y=\ln(x^2)\)在\((0,+\infty)\)上单调递减
5.若\(\sin\alpha+\cos\alpha=\sqrt{2}\),则\(\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cos\alpha\)的值为:
A.2
B.3
C.4
D.5
6.已知\(\triangleABC\)中,\(A=60^\circ\),\(a=2\),\(b=\sqrt{3}\),则\(c\)的值为:
A.1
B.\(\sqrt{3}\)
C.2
D.\(\sqrt{6}\)
7.设\(a0\),\(b0\),则\(\frac{a}{b}+\frac{b}{a}\)的最小值为:
A.2
B.\(\sqrt{2}\)
C.4
D.6
8.已知\(f(x)=x^3-6x^2+9x+1\),则\(f(-2)\)的值为:
A.-1
B.0
C.1
D.2
9.若\(\sin\alpha\cos\beta+\cos\alpha\sin\beta=\sin(\alpha+\beta)\),则\(\sin\alpha\cos\beta-\cos\alpha\sin\beta\)的值为:
A.\(\sin(\alpha-\beta)\)
B.\(\cos(\alpha-\beta)\)
C.\(\sin(\alpha+\beta)\)
D.\(\cos(\alpha+\beta)\)
10.已知\(\log_2(3x-1)=\log_2(2x+1)\),则\(x\)的值为:
A.1
B.\(\frac{1}{2}\)
C.\(\frac{3}{2}\)
D.2
二、判断题(每题2分,共10题)
1.对于任意实数\(x\),\(x^2+1\)的值总是大于0。()
2.函数\(y=\frac{1}{x}\)在\(x0\)时单调递增。()
3.若\(a\)和\(b\)是方程\(ax^2+bx+c=0\)的两个实数根,则\(a+b=-\frac{b}{a}\)。()
4.对于任意实数\(x\),\(\sin^2x+\cos^2x=1\)总是成立。()
5.若\(\sin\alpha=\cos\beta\),则\(\alpha=\beta\)。()
6.函数\(y=\ln(x)\)在\(x0\)时单调递增。()
7.对于任意实数\(x\),\(\log_2(x)\)的值总是大于0。()
8.若\(\triangleABC\)是等边三角形,则\(\angleA=\angleB=\angleC=90^\circ\)。()
9.函数\(y=e^x\)在\(\mathbb{R}\)上单调递减。()
10.对于任意实数\(x\),\(\sqrt{x^2}=|x|\)总是成立。()
三、简答题(每题5分,共4题)
1.简述函数\(y=ax^2+bx+c\)(\(a\neq0\))的图像特征,并说明如何通过图像判断函数的开口