数学高考复习窍门试题及答案分析
姓名:____________________
一、多项选择题(每题2分,共10题)
1.已知函数\(f(x)=x^3-3x+1\),则下列说法正确的是()
A.函数在\(x=1\)处取得极值
B.函数的图像关于原点对称
C.函数的图像在\(x=0\)处有水平切线
D.函数在\(x=-1\)处取得极小值
2.已知等差数列\(\{a_n\}\)的公差为\(d\),若\(a_1=2\),\(a_4=10\),则\(a_7\)的值为()
A.14
B.16
C.18
D.20
3.若\(\angleAOB=120^\circ\),\(\overrightarrow{OA}=\begin{pmatrix}1\\0\end{pmatrix}\),\(\overrightarrow{OB}=\begin{pmatrix}-\frac{1}{2}\\\frac{\sqrt{3}}{2}\end{pmatrix}\),则\(\overrightarrow{OA}\cdot\overrightarrow{OB}\)的值为()
A.\(-\frac{3}{2}\)
B.\(-\frac{\sqrt{3}}{2}\)
C.\(\frac{\sqrt{3}}{2}\)
D.0
4.已知圆\(x^2+y^2=4\)的圆心为\((0,0)\),半径为2,点\(P\)在圆上,\(\overrightarrow{OP}\)的长度为\(\sqrt{3}\),则\(\angleAOP\)的度数为()
A.30°
B.45°
C.60°
D.90°
5.若函数\(f(x)=\frac{ax+b}{cx+d}\)在\(x=1\)处取得极值,则\(a\)、\(b\)、\(c\)、\(d\)之间的关系为()
A.\(ac-bd=0\)
B.\(ad-bc=0\)
C.\(ac+bd=0\)
D.\(ad+bc=0\)
6.已知数列\(\{a_n\}\)满足\(a_1=1\),\(a_n=2a_{n-1}+1\),则\(a_4\)的值为()
A.3
B.5
C.7
D.9
7.若\(\overrightarrow{a}=\begin{pmatrix}1\\2\end{pmatrix}\),\(\overrightarrow{b}=\begin{pmatrix}3\\4\end{pmatrix}\),则\(\overrightarrow{a}\cdot\overrightarrow{b}\)的值为()
A.7
B.10
C.12
D.14
8.已知函数\(f(x)=x^2-2x+3\),则\(f(x)\)的图像关于直线\(x=1\)对称,下列说法正确的是()
A.\(f(x)\)在\(x=1\)处取得极值
B.\(f(x)\)在\(x=1\)处有水平切线
C.\(f(x)\)在\(x=1\)处有斜率为0的切线
D.\(f(x)\)在\(x=1\)处有斜率为-2的切线
9.已知等比数列\(\{a_n\}\)的公比为\(q\),若\(a_1=2\),\(a_4=32\),则\(a_7\)的值为()
A.64
B.128
C.256
D.512
10.若函数\(f(x)=x^3-6x^2+9x\)在\(x=2\)处取得极值,则\(f(x)\)在\(x=2\)处的导数值为()
A.0
B.2
C.4
D.6
二、判断题(每题2分,共10题)
1.函数\(y=\sqrt{x^2-1}\)的定义域为\(x\in[-1,+\infty)\)。()
2.若\(a\)和\(b\)是等差数列的两项,且\(ab\),则\(a+b0\)。()
3.向量\(\overrightarrow{a}\)与向量\(\overrightarrow{b}\)垂直的充要条件是\(\overrightarrow{a}\cdot\overrightarrow{b}=0\)。()
4.已知圆\(x^2+y^2=r^2\),则圆的面积为\