数学高考习题推荐试题及答案
姓名:____________________
一、多项选择题(每题2分,共10题)
1.若函数\(f(x)=ax^2+bx+c\)在\(x=1\)处取得极值,则\(a\)和\(b\)必须满足的条件是:
A.\(a\neq0\),\(b=0\)
B.\(a\neq0\),\(b\neq0\)
C.\(a=0\),\(b\neq0\)
D.\(a=0\),\(b=0\)
2.下列不等式中,恒成立的是:
A.\(x^2+y^2\geq2xy\)
B.\(x^2-y^2\geq0\)
C.\(x^2+y^2\leq2xy\)
D.\(x^2-y^2\leq0\)
3.已知\(\sin\alpha=\frac{3}{5}\),且\(\alpha\)在第二象限,则\(\tan\alpha\)的值为:
A.\(\frac{3}{4}\)
B.\(-\frac{3}{4}\)
C.\(-\frac{4}{3}\)
D.\(\frac{4}{3}\)
4.在直角坐标系中,点\(A(2,3)\)关于直线\(y=x\)的对称点是:
A.\((2,3)\)
B.\((3,2)\)
C.\((-2,-3)\)
D.\((-3,-2)\)
5.函数\(y=x^3-3x\)的单调递增区间是:
A.\((-\infty,-\sqrt{3})\)
B.\((-\sqrt{3},0)\)
C.\((0,\sqrt{3})\)
D.\((\sqrt{3},+\infty)\)
6.若\(\sinA=\frac{1}{2}\),\(\cosB=\frac{\sqrt{3}}{2}\),且\(A\)和\(B\)均为锐角,则\(\sin(A+B)\)的值为:
A.\(\frac{\sqrt{2}}{2}\)
B.\(\frac{\sqrt{6}}{4}\)
C.\(\frac{\sqrt{3}}{2}\)
D.\(\frac{1}{2}\)
7.下列命题中,正确的是:
A.\(\forallx\in\mathbb{R},x^2\geq0\)
B.\(\existsx\in\mathbb{R},x^20\)
C.\(\forallx\in\mathbb{R},x^2=0\)
D.\(\existsx\in\mathbb{R},x^2=1\)
8.已知\(\triangleABC\)的内角\(A,B,C\)满足\(A+B+C=\pi\),且\(\sinA+\sinB+\sinC=2\),则\(\cosA+\cosB+\cosC\)的值为:
A.\(1\)
B.\(0\)
C.\(-1\)
D.\(2\)
9.若\(a,b,c\)是等差数列,且\(a+b+c=6\),\(a^2+b^2+c^2=18\),则\(bc\)的值为:
A.\(1\)
B.\(2\)
C.\(3\)
D.\(4\)
10.若\(f(x)=x^3-3x^2+4\)的图像在\(x=1\)处与\(x\)轴相切,则\(f(1)\)的值为:
A.\(-2\)
B.\(0\)
C.\(2\)
D.\(4\)
二、判断题(每题2分,共10题)
1.若\(a\)和\(b\)是实数,且\(a^2+b^2=0\),则\(a=0\)且\(b=0\)。()
2.在等差数列中,若首项为\(a_1\),公差为\(d\),则第\(n\)项\(a_n\)等于\(a_1+(n-1)d\)。()
3.若\(\sinx=\frac{1}{2}\),则\(x\)必定是第一象限的角。()
4.任何两个有理数的和与差也是有理数。()
5.函数\(y=x^3\)的图像在\(x\)轴上无交点。()
6.若\(\tri