数学高考一轮复习试题及答案提炼
姓名:____________________
一、多项选择题(每题2分,共10题)
1.若函数\(f(x)=ax^2+bx+c\)(\(a\neq0\))的图象开口向上,对称轴为\(x=-\frac{b}{2a}\),则以下选项正确的是:
A.\(a0\)
B.\(b0\)
C.\(c0\)
D.\(a+b+c0\)
2.已知等差数列\(\{a_n\}\)的前n项和为\(S_n=3n^2-n\),则该数列的公差为:
A.4
B.5
C.6
D.7
3.设函数\(f(x)=\log_2(x-1)\),若\(f(2x-3)f(4x-5)\),则\(x\)的取值范围是:
A.\(x2\)
B.\(x2\)
C.\(x1\)
D.\(x1\)
4.已知向量\(\vec{a}=(2,3)\),\(\vec{b}=(-1,2)\),则\(\vec{a}\cdot\vec{b}\)的值为:
A.-7
B.7
C.-1
D.1
5.若\(\frac{1}{\sinx}+\frac{1}{\cosx}=\sqrt{2}\),则\(\sinx\cosx\)的值为:
A.\(\frac{1}{2}\)
B.\(\frac{\sqrt{2}}{2}\)
C.1
D.-1
6.若\(a,b,c\)是等比数列的连续三项,且\(a+b+c=6\),\(abc=8\),则\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)的值为:
A.2
B.3
C.4
D.5
7.在平面直角坐标系中,点\(A(1,2)\),\(B(-2,1)\),则线段\(AB\)的中点坐标为:
A.\((-\frac{1}{2},\frac{3}{2})\)
B.\((\frac{1}{2},\frac{3}{2})\)
C.\((\frac{3}{2},-\frac{1}{2})\)
D.\((\frac{3}{2},\frac{3}{2})\)
8.设\(f(x)=\frac{x^2-3x+2}{x-1}\),则\(f(x)\)的定义域为:
A.\(x\neq1\)
B.\(x\neq0\)
C.\(x\neq2\)
D.\(x\neq-2\)
9.若\(\cos^2x+\sin^2x=1\),\(\sinx0\),\(\cosx0\),则\(\tanx\)的值为:
A.-1
B.1
C.-\(\frac{1}{\sqrt{2}}\)
D.\(\frac{1}{\sqrt{2}}\)
10.若\(\overrightarrow{a}=(1,2)\),\(\overrightarrow{b}=(-3,2)\),则\(\overrightarrow{a}-2\overrightarrow{b}\)的值为:
A.\((7,4)\)
B.\((-7,-4)\)
C.\((7,-4)\)
D.\((-7,4)\)
二、判断题(每题2分,共10题)
1.等差数列的前n项和\(S_n=3n^2-n\),则第n项\(a_n\)为\(6n-4\)。()
2.对于任何实数\(x\),函数\(f(x)=x^2+2x+1\)的图象是开口向上的抛物线。()
3.若\(\log_2x=3\),则\(x=2^3\)。()
4.向量\(\vec{a}=(2,3)\)和\(\vec{b}=(1,-1)\)垂直时,它们的点积为零。()
5.对于任意实数\(x\),\(\sin^2x+\cos^2x=1\)恒成立。()
6.在等比数列中,任意三项\(a,ar,ar^2\)构成等差数列。()
7.若\(a,b,c\)是等差数列,则\(a+b+c\)是该等差数列的项。()
8.平面直角坐标系中,点\(A(1,2)\)和点\(B(-2,1)\)之间的距离等于2。()