数学高考2024年实施细则与试题及答案
姓名:____________________
一、多项选择题(每题2分,共10题)
1.已知函数\(f(x)=x^3-3x^2+4x+6\),下列说法正确的是:
(1)\(f(x)\)在实数范围内有极大值
(2)\(f(x)\)在实数范围内有极小值
(3)\(f(x)\)在实数范围内有拐点
(4)\(f(x)\)在实数范围内无极值和拐点
A.(1)(2)
B.(2)(3)
C.(3)(4)
D.(1)(3)
2.若向量\(\mathbf{a}=(2,-3)\),向量\(\mathbf{b}=(-1,2)\),则\(\mathbf{a}\cdot\mathbf{b}\)的值为:
A.-7
B.-5
C.5
D.7
3.在直角坐标系中,点\(A(2,3)\),点\(B(5,1)\),则\(AB\)的中点坐标为:
A.(3.5,2)
B.(3.5,1)
C.(2,1)
D.(2,2.5)
4.已知\(\sinx+\cosx=\sqrt{2}\),则\(\sin^2x+\cos^2x\)的值为:
A.1
B.2
C.\(\sqrt{2}\)
D.0
5.若\(\log_{\frac{1}{2}}x=3\),则\(x\)的值为:
A.\(\frac{1}{8}\)
B.2
C.8
D.\(\frac{1}{2}\)
6.已知函数\(f(x)=\frac{1}{x-1}+\frac{1}{x+1}\),则\(f(x)\)的定义域为:
A.\(x\neq1\)
B.\(x\neq-1\)
C.\(x\neq1,-1\)
D.\(x\neq0\)
7.已知\(\sinA=\frac{3}{5}\),\(\cosB=-\frac{4}{5}\),则\(\sin(A+B)\)的值为:
A.\(\frac{7}{25}\)
B.\(-\frac{7}{25}\)
C.\(-\frac{24}{25}\)
D.\(\frac{24}{25}\)
8.已知数列\(\{a_n\}\)的通项公式为\(a_n=2n-1\),则\(\{a_n\}\)的奇数项组成的数列的通项公式为:
A.\(a_n=4n-3\)
B.\(a_n=4n-5\)
C.\(a_n=4n-7\)
D.\(a_n=4n-9\)
9.已知等差数列\(\{a_n\}\)的前\(n\)项和为\(S_n=2n^2+3n\),则\(a_1\)的值为:
A.-5
B.-3
C.1
D.5
10.若\(\lim_{x\to0}\frac{\sin2x-x}{\sinx}=\frac{3}{2}\),则\(x\)的值为:
A.\(\frac{\pi}{3}\)
B.\(\frac{\pi}{6}\)
C.\(\frac{\pi}{4}\)
D.\(\frac{\pi}{2}\)
二、判断题(每题2分,共10题)
1.若\(ab0\),则\(\frac{1}{a}\frac{1}{b}\)。()
2.二项式定理展开式中,第\(r+1\)项的系数为\(C_n^r\)。()
3.在平面直角坐标系中,两直线\(y=kx\)和\(y=-\frac{1}{k}x\)互相垂直。()
4.若\(\sinx\)的周期为\(T\),则\(\cosx\)的周期也为\(T\)。()
5.对数函数\(y=\log_{\frac{1}{2}}x\)在\((0,+\infty)\)上单调递增。()
6.在等差数列\(\{a_n\}\)中,若\(a_10\),\(d0\),则数列\(\{a_n\}\)单调递减。()
7.三角函数\(\sinx\)、\(\cosx\)、\(\tanx\)的周期均为\(\pi\)。()
8.在直角三角形中,斜边上的中线等于斜边的一半。()
9.若\(\lim_{x\to0}\frac{\sinx}{x}=1\),则\(\sinx\)在\(x=0\)处连续。()
10.向量\(\mathbf{a}\)与\(\mathbf{b}\)的夹角为\(\frac