基本信息
文件名称:概率论期末考试题及答案.doc
文件大小:27.62 KB
总页数:9 页
更新时间:2025-05-27
总字数:约6.31千字
文档摘要

概率论期末考试题及答案

单项选择题(每题2分,共20分)

1.设\(A\),\(B\)为两个互斥事件,且\(P(A)0\),\(P(B)0\),则下列结论正确的是()

A.\(P(A|B)=P(A)\)B.\(P(B|A)0\)C.\(P(AB)=P(A)P(B)\)D.\(P(A\cupB)=P(A)+P(B)\)

2.已知随机变量\(X\)服从参数为\(\lambda\)的泊松分布,且\(P(X=1)=P(X=2)\),则\(\lambda\)的值为()

A.1B.2C.3D.4

3.设随机变量\(X\)的概率密度函数为\(f(x)=\begin{cases}2x,0x1\\0,其他\end{cases}\),则\(P(X\leq0.5)\)等于()

A.0.25B.0.5C.0.75D.1

4.设随机变量\(X\)与\(Y\)相互独立,且\(X\simN(1,4)\),\(Y\simN(0,1)\),则\(Z=X-2Y\)服从的分布为()

A.\(N(1,8)\)B.\(N(1,6)\)C.\(N(1,4)\)D.\(N(1,2)\)

5.设随机变量\(X\)的期望\(E(X)=\mu\),方差\(D(X)=\sigma^2\),则对任意正数\(\varepsilon\),有()

A.\(P(|X-\mu|\geq\varepsilon)\leq\frac{\sigma^2}{\varepsilon^2}\)B.\(P(|X-\mu|\geq\varepsilon)\geq\frac{\sigma^2}{\varepsilon^2}\)

C.\(P(|X-\mu|\varepsilon)\leq\frac{\sigma^2}{\varepsilon^2}\)D.\(P(|X-\mu|\varepsilon)\geq\frac{\sigma^2}{\varepsilon^2}\)

6.设\(X_1,X_2,\cdots,X_n\)是来自总体\(X\)的样本,且\(E(X)=\mu\),\(D(X)=\sigma^2\),则样本均值\(\overline{X}=\frac{1}{n}\sum_{i=1}^{n}X_i\)的期望\(E(\overline{X})\)为()

A.\(\mu\)B.\(\frac{\mu}{n}\)C.\(n\mu\)D.\(\mu^2\)

7.设总体\(X\simN(\mu,\sigma^2)\),\(X_1,X_2,\cdots,X_n\)是来自总体\(X\)的样本,\(\overline{X}\)为样本均值,\(S^2\)为样本方差,则\(\frac{(n-1)S^2}{\sigma^2}\)服从()

A.正态分布B.\(t\)分布C.\(\chi^2\)分布D.\(F\)分布

8.设随机变量\(X\)的分布函数为\(F(x)=\begin{cases}0,x0\\x^2,0\leqx1\\1,x\geq1\end{cases}\),则\(X\)的概率密度函数\(f(x)\)为()

A.\(f(x)=\begin{cases}2x,0x1\\0,其他\end{cases}\)B.\(f(x)=\begin{cases}x^2,0x1\\0,其他\end{cases}\)

C.\(f(x)=\begin{cases}2x,0\leqx1\\0,其他\end{cases}\)D.\(f(x)=\begin{cases}x^2,0\leqx1\\0,其他\end{cases}\)

9.设\(A\),\(B\)为两个事件,且\(P(A)=0.6\),\(P(B)=0.5\),\(P(A|B)=0.4\),则\(P(B|A)\)等于()

A.\(\frac{1}{3}\)B.\(\frac{1}{2}\)C.\(\frac{2}{3}\)D.\(\frac{3}{4}\)

10.设随机变量\(X\)的概率分布为\(P(X=k)=\frac{c}{k(k+1)}\),\(k=1,2,\cdots\),则常数\(c\)的值为()

A.1B.2C.\(\frac{1}{2}\)D