基本信息
文件名称:徐州经济技术开发区高级中学苏教版高中数学一学案函数图象的平移与变换.docx
文件大小:123.27 KB
总页数:4 页
更新时间:2025-05-28
总字数:约1.03千字
文档摘要

学必求其心得,业必贵于专精

学必求其心得,业必贵于专精

学必求其心得,业必贵于专精

第八课时函数图象的平移与变换

编制:胡艳之审核:宁慧珍2017.9。20

【学习目标】

1、会画基本初等函数的图象;

2、会利用图象变换解决数学问题。

【活动过程】

一。探究如何由的图像得到()的图像

例1、在同一坐标系下画出,,的图像,观察如何由y=2的图像得到的图像。

【总结】函数的图像可由先向左或向右平移个单位,再将所得图像向上或向下平移个单位得到。(口诀:左加右减,上加下减)

练习:画出函数的图象

二、探究如何由的图像得到和的图像

例2分别画出,,的图像,观察如何由分别得到及的图像。

【总结】?要得到的图像,可将的图像在轴下方的部分以为轴翻折到轴上方,其余部分不变;

?要得到的图像,可将,的部分作出,再利用偶函数的图像关于的对称性,作出时的图像.

练习:

1、若关于方程有三个不相等的实数根,则实数=。

2、若关于的方程有四个不同的实数解,则实数的取值范围是.

三.探究如何由的图像得到,和的图像

复习:点A关于轴的对称点坐标为,点A关于轴对称点坐标为,点A关于原点的对称点坐标为。

例3、分别画出函数,,,的图像.

【总结】?函数的图像可通过作的图像关于轴对称的图形而得到;

?函数的图像可通过作的图像关于轴对称的图形而得到;

?函数的图像可通过作函数的图像关于对称的图形而得到;

活动五:课后巩固班级:高一()班姓名__________

1.把函数的图象向左平移一个单位,再向上平移一个单位,所得图象对应的函数解析式为.

2.已知函数是上的奇函数,则函数的图象经过的定点为.

113.函数的图象是.

1

1

4.若函数是偶函数,则函数的图象有对称轴.

5.函数在上单调递减,则实数的范围为.

6.在平面直角坐标系中,若直线与函数的图象只有一个交点,则的值为.

7。方程正实数根的个数是