学必求其心得,业必贵于专精
学必求其心得,业必贵于专精
学必求其心得,业必贵于专精
年级
高二
学科
数学
选修1-1/2-1
总课题
2.2椭圆
总课时
第课时
分课题
2。2.1椭圆的标准方程(2)
分课时
第2课时
主备人
梁靓
审核人
朱兵
上课时间
预习导读
(文)(理):完成教学案前两项.
学习目标
1.能正确运用椭圆的定义与标准方程解题;
2.学会用待定系数法与定义法求曲线的方程.
一、问题探究
探究1:方程是否可以表示椭圆?若能表示椭圆,则需要满足的条件是什么?
探究2:椭圆的标准方程中的两个参数确定了椭圆形状和大小,是椭圆的定形条件,我们称其为椭圆的“基本量”,除了还有那些量可以充当椭圆的基本量?
例1.画出下列方程所表示的曲线:
(1)(2)
例2.已知椭圆的焦点是为椭圆上一点,且是和的等差中项.(1)求椭圆的方程;
(2)若点在第三象限,且,求.
例3.(理)已知为椭圆的焦点,点在椭圆上,证明:以为
直径的圆与圆相切.
二、思维训练
1.已知是椭圆的焦点,点在椭圆上,且,
满足条件的点有个.
2.椭圆的焦点为,点在椭圆上,如果线段的中点在轴上,
那么是的倍
3.已知圆,为圆上的动点,由P向轴作垂线,其中为垂足,
则线段的中点M的轨迹方程为.
4.已知F是的右焦点,P是其上的一点,定点B(2,1),则的最大值为,最小值为.
三、当堂检测
1.动点P到两定点(—4,0),(4,0)的距离的和是8,则动点P的轨迹方程为____
2.已知椭圆的焦点在轴上,则的取值范围
是
3.已知对,直线y-kx-1=0与椭圆+=1恒有公共点,则实数m的取值范围是
4.在平面直角坐标系中,已知顶点和,顶点在椭圆
上,则
四、课后巩固
1.已知椭圆,点在椭圆上,的两个顶点坐标分别是和,求两边的斜率的乘积.
2.已知椭圆与椭圆有相同的焦点,且椭圆过点(-3,2),求椭圆的方程.
3.已知的三个顶点均在椭圆上,且点是椭圆短轴的一个端点,的重心是椭圆的右焦点,试求直线的方程.
4。(理)设,为直角坐标平面内x、y轴正方向上的单位向量,
若向量,,且,求动点
的轨迹C的方程.
总结与反思:
总结与反思: