辽宁省灯塔市中考数学自我提分评估
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、抛物线的对称轴为直线.若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()
A. B. C. D.
2、二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差(???????)
A.与p、q的值都有关 B.与p无关,但与q有关
C.与p、q的值都无关 D.与p有关,但与q无关
3、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()
A. B. C. D.
4、若m,n是方程x2-x-2022=0的两个根,则代数式(m2-2m-2022)(-n2+2n+2022)的值为(???????)
A.2023 B.2022 C.2021 D.2020
5、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是(???????)
A. B. C. D.
二、多选题(5小题,每小题3分,共计15分)
1、如图,是的直径,,交于点,交于点,是的中点,连接.则下列结论正确的是(???????)
A. B. C. D.是的切线
2、下列条件中,不能确定一个圆的是(???????)
A.圆心与半径 B.直径
C.平面上的三个已知点 D.三角形的三个顶点
3、下列方程中是一元二次方程的有(????????)
A.
B.
C.
D.
E.
F.
4、下列命题正确的是(???????)
A.菱形既是中心对称图形又是轴对称图形
B.的算术平方根是5
C.如果一个多边形的各个内角都等于108°,则这个多边形是正五边形
D.如果方程有实数根,则实数
5、已知,为半径是3的圆周上两点,为的中点,以线段,为邻边作菱形,顶点恰在该圆直径的三等分点上,则该菱形的边长为(???????)
A. B. C. D.
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是____________.
2、对任意实数a,b,定义一种运算:,若,则x的值为_________.
3、一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是_____.
4、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.
5、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_____.
四、解答题(6小题,每小题10分,共计60分)
1、用配方法解方程:.
2、小敏与小霞两位同学解方程的过程如下框:
小敏:两边同除以,得
,
则.
小霞:移项,得,
提取公因式,得.
则或,
解得,.
你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.
3、如图是两条互相垂直的街道,且A到B,C的距离都是4千米.现甲从B地走向A地,乙从A地走向C地,若两人同时出发且速度都是4千米/时,问何时两人之间的距离最近?
4、如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△ABC′的位置,使得CC′AB,求∠CCA的度数.
5、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接.
(1)判断和的数量及位置关系,并说明理由;
(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由.
6、某水果店标价为10元/kg的某种水果经过两次降价后价格为8.1元/kg,并且两次降价的百分率相同.
时间/天
x
销量/kg
120-x
储藏和损耗费用/元
3x2-64x+400
(1)求该水果每次降价的百分率;
(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示,已知该水果的进价为4.1元/kg,设销售该水果第x天(1≤x<10)的利润为377元,求x的值.
-参考答案-
一、单选题