学必求其心得,业必贵于专精
学必求其心得,业必贵于专精
学必求其心得,业必贵于专精
年级
高二
学科
数学
选修1—1/2-1
总课题
2。2椭圆
总课时
第课时
分课题
2。2。1椭圆的标准方程(1)
分课时
第1课时
主备人
梁靓
审核人
朱兵
上课时间
预习导读
(文)阅读选修1—1第28—-30页,然后做教学案,完成前两项。
(理)阅读选修2-1第30—-32页,然后做教学案,完成前两项。
学习目标
1.理解椭圆的定义,明确焦点、焦距的概念.
2.熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆的草图并确定椭圆的标准方程.
3.能由椭圆定义推导椭圆的方程.
一、问题探究
探究1:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端
固定在画图板上的两点,当绳长大于两点间的距离时,用铅笔
把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆在这
个运动过程中,什么是不变的?
探究2:椭圆的标准方程是如何推导而得到的.
探究3:在椭圆的标准方程中分母的大小反映了焦点所在的坐标轴,并且之间的关系是.
例1.写出适合下列条件的椭圆的标准方程:
两个焦点坐标分别是(—4,0)、(4,0),椭圆上一点到两焦点的距离之和等于10;
(2)两个焦点坐标分别是(0,-2)和(0,2)且过(,)
例2.求适合下列条件的椭圆的标准方程。
(1)焦点在轴上,且经过点(2,0)和点(0,1)。
(2)焦点在轴上,与轴的一个交点为,到它较近的一个焦点的距离等于2.
例3.已知椭圆经过两点(,求椭圆的标准方程
二、思维训练
1.已知椭圆两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(-5,0)。则椭圆的标准方程为.
2.椭圆上一点到焦点的距离等于6,则点到另一个焦点的距离是.
3.已知两点在椭圆上,椭圆的左、右焦点分别为,,过,若的内切圆半径为1,则△的面积为.
4。已知两个圆和圆,则与圆外切且与圆内切的动圆的圆心轨迹方程是.
三、当堂检测
1.判断下列方程是否表示椭圆,若是,求出的值
①;②;③;④.
2.椭圆的焦距是,焦点坐标为.
3.动点到两定点,的距离的和是10,则动点所产生的曲线方程为.
4.椭圆左右焦点分别为,若为过左焦点的弦,则的周长为.
四、课后巩固
1.方程表示焦点在轴上的椭圆,则的取值范围是.
2.椭圆的方程为,焦点在轴上,则其焦距为(含的式子).
3.椭圆的一个焦点是(0,2),那么k等于.
4.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个边长为正三角形,求这个椭圆方程.
5.点是椭圆上一点,是其焦点,若,求面积.
6.(理)已知定圆,动圆和已知圆内切且过点P(-3,0),求圆心M所产生轨迹的方程
总结与反思:
总结与反思: