广东省普宁市中考数学检测卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、下列方程:①;②;③;④;⑤.是一元二次方程的是(???????)
A.①② B.①②④⑤ C.①③④ D.①④⑤
2、已知关于x的一元二次方程x2﹣3x+1=0有两个不相等的实数根x1,x2,则x12+x22的值是()
A.﹣7 B.7 C.2 D.﹣2
3、如图,五边形是⊙O的内接正五边形,则的度数为(???)
A. B. C. D.
4、二次函数y=ax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是(???????)
A.(﹣1,0)和(5,0) B.(1,0)和(5,0)
C.(0,﹣1)和(0,5) D.(0,1)和(0,5)
5、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()
A. B.
C. D.
二、多选题(5小题,每小题3分,共计15分)
1、如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转a度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:其中正确的有(????????).
A.∠CDF=a度
B.A1E=CF
C.DF=FC
D.BE=BF
2、古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论正确的是.
A.△AOE的内心与外心都是点G B.∠FGA=∠FOA
C.点G是线段EF的三等分点 D.EF=AF
3、下面一元二次方程的解法中,不正确的是(???????)
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x两边同除以x,得x=1
4、如图,已知抛物线.将该抛物线在x轴及x轴下方的部分记作C1,将C1沿x轴翻折构成的图形记作C2,将C1和C2构成的图形记作C3.关于图形C3,给出的下列四个结论,正确的是(???????)
A.图形C3恰好经过4个整点(横、纵坐标均为整数的点)
B.图形C3上任意一点到原点的最大距离是1
C.图形C3的周长大于2π
D.图形C3所围成区域的面积大于2且小于π
5、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论中正确的有()
A.4a+b=0
B.9a+c>﹣3b
C.7a﹣3b+2c>0
D.若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2
E.若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、抛物线是二次函数,则m=___.
2、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,.
(1)以点E,O,F,D为顶点的图形的面积为_________;
(2)线段EF的最小值是_________.
3、如图,抛物线的图象与坐标轴交于点、、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是__________.
4、已知抛物线与x轴的一个交点为,则代数式的值为______.
5、菱形的一条对角线长为8,其边长是方程x2-8x+15=0的一个根,则该菱形的面积为________.
四、解答题(6小题,每小题10分,共计60分)
1、冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50