云南省景洪市中考数学试题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()
A. B. C. D.
2、关于的方程有两个不相等的实根、,若,则的最大值是(???????)
A.1 B. C. D.2
3、关于x的一元二次方程根的情况,下列说法正确的是(???????)
A.有两个不相等的实数根 B.有两个相等的实数根
C.无实数根 D.无法确定
4、已知点在半径为8的外,则(???????)
A. B. C. D.
5、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为(???????)
A.30° B.90° C.120° D.180°
二、多选题(5小题,每小题3分,共计15分)
1、如图,如果AB为⊙O的直径,弦CD⊥AE,垂足为E,那么下列结论中,正确的是(???????)
A. B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD
2、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论中正确的有()
A.abc<0 B.2a+b=0 C.3a+2c>0 D.对于任意x均有ax2﹣a+bx﹣b≥0
3、已知:如图,△ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB、AC于点D、E.连接DE、OE.下列结论中正确的结论是()
A.BC=2DE B.D点到OE的距离不变
C.BD+CE=2DE D.AE为外接圆的切线
4、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论中正确的有()
A.4a+b=0
B.9a+c>﹣3b
C.7a﹣3b+2c>0
D.若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2
E.若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2
5、如图是抛物线的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),点P在抛物线上,且在直线AB上方,则下列结论正确的是(?????)
A. B.方程有两个相等的实根
C. D.点P到直线AB的最大距离
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是_____.
2、如图,直线y=﹣x+6与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最大值为_____.
3、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.
4、如图,在甲,,,,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为__________(结果保留).
5、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公共点,则m的值为______.
四、解答题(6小题,每小题10分,共计60分)
1、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y件.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)设每月的销售利润为W,请直接写出W与x的函数关系式.
2、一个二次函数y=(k﹣1).求k值.
3、解下列方程:
(1);
(2).
4、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点.
(1)求抛物线的解析式;
(2)连结,在第一象限内的抛物线上,是否存在一点,使的面积最大?最大面积是多少?
5、解方程:
(1)x2-x-2=0;
(2)