福建省永安市中考数学检测卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、对于抛物线,下列说法正确的是()
A.抛物线开口向上
B.当时,y随x增大而减小
C.函数最小值为﹣2
D.顶点坐标为(1,﹣2)
2、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是(???????)
A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850
C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+2000
3、如果,那么的结果是(???????)
A. B. C. D.
4、如图,在中,,,,以点为圆心,为半径的圆与所在直线的位置关系是(???)
A.相交 B.相离 C.相切 D.无法判断
5、二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差(???????)
A.与p、q的值都有关 B.与p无关,但与q有关
C.与p、q的值都无关 D.与p有关,但与q无关
二、多选题(5小题,每小题3分,共计15分)
1、请观察下列美丽的图案,你认为既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
2、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(???????)
A. B. C.3 D.5
3、如图,为的直径延长线上的一点,与相切,切点为,是上一点,连接.已知,则下列结论正确的为(???????)
A.与相切 B.四边形是菱形
C. D.
4、(多选)若数使关于的一元二次方程有两个不相等的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为(???????)
A.1 B.3 C.5 D.7
5、已知,⊙的半径为5,,某条经过点的弦的长度为整数,则该弦的长度可能为(???????)
A.4 B.6 C.8 D.10
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如图,在平面直角坐标系中,等腰直角三角形OAB,∠A=90°,点O为坐标原点,点B在x轴上,点A的坐标是(1,1).若将△OAB绕点O顺时针方向依次旋转45°后得到△OA1B1,△OA2B2,△OA3B3,…,可得A1(,0),A2(1,﹣1),A3(0,﹣),…则A2021的坐标是______.
2、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.
3、如图,正方形ABCD的边长为6,点E在边CD上.以点A为中心,把△ADE顺时针旋转90°至△ABF的位置.若DE=2,则FE=___.
4、对于任意实数,抛物线与轴都有公共点.则的取值范围是_______.
5、如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为_____.
四、解答题(6小题,每小题10分,共计60分)
1、如图,直角三角形中,,为中点,将绕点旋转得到.一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使.
(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的面积为,求关于的函数关系式,并求出的最大值.
(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样的,使为等腰三角形?若存在,直接写出点运动的时间的值,若不存在请说明理由.
2、解下列方程:
(1);
(2).
3、解一元二次方程
(1)
(2)
4、解下列方程:
(1);(2)
5、用配方法解方程:.
6、已知抛物线.
(1)该抛物线的对称轴为;
(2)若该抛物线的顶点在x轴上,求抛物线的解析式;