河南省沁阳市中考数学测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、如图,矩形ABCD中,AD=2,AB=,对角线AC上有一点G(异于A,C),连接DG,将△AGD绕点A逆时针旋转60°得到△AEF,则BF的长为(?????)
A. B.2 C. D.2
2、已知关于x的一元二次方程x2﹣3x+1=0有两个不相等的实数根x1,x2,则x12+x22的值是()
A.﹣7 B.7 C.2 D.﹣2
3、一元二次方程x2-3x+1=0的根的情况是(???????).
A.没有实数根 B.有两个相等的实数根
C.只有一个实数根 D.有两个不相等的实数根
4、如图,在中,为的直径,和相切于点E,和相交于点F,已知,,则的长为(???????)
A. B. C. D.2
5、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()
A. B.
C. D.
二、多选题(5小题,每小题3分,共计15分)
1、如图,AB是的直径,C是上一点,E是△ABC的内心,,延长BE交于点F,连接CF,AF.则下列结论正确的是(???????)
A. B.
C.△AEF是等腰直角三角形 D.若,则
2、对于二次函数y=﹣2(x﹣1)(x+3),下列说法不正确的是()
A.图象的开口向上
B.图象与y轴交点坐标是(0,6)
C.当x>﹣1时,y随x的增大而增大
D.图象的对称轴是直线x=1
3、如图在四边形中,,,,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是(???????)
A.是劣弧的中点 B.是圆的切线
C. D.
4、如图,是的直径,,交于点,交于点,是的中点,连接.则下列结论正确的是(???????)
A. B. C. D.是的切线
5、已知,为半径是3的圆周上两点,为的中点,以线段,为邻边作菱形,顶点恰在该圆直径的三等分点上,则该菱形的边长为(???????)
A. B. C. D.
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如果关于x的方程x2﹣3x+k=0(k为常数)有两个相等的实数根,那么k的值是___.
2、将抛物线向上平移()个单位长度,<k<,平移后的抛物线与双曲线y=(x>0)交于点P(p,q),M(1+,n),则下列结论正确的是__________.(写出所有正确结论的序号)
①0<p<1-;???②1-<p<1;???③q<n;???④q>2k-k.
3、抛物线的开口方向向______.
4、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,.
(1)以点E,O,F,D为顶点的图形的面积为_________;
(2)线段EF的最小值是_________.
5、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.
四、解答题(6小题,每小题10分,共计60分)
1、陕西某景区吸引了大量中外游客前来参观,如果游客过多,对进景区的游客健康检查、拥堵等问题会产生不利影响,但也要保证一定的门票收入,因此景区采取了涨浮门票价格的方法来控制旅游人数,在该方法实施过程中发现:每周旅游人数与票价之间存在着如图所示的一次函数关系.在这种情况下,如果要保证每周3000万元的门票收入,那么每周应限定旅游人数是多少万人?门票价格应是多少元?
2、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点.
(1)求抛物线的解析式;
(2)连结,在第一象限内的抛物线上,是否存在一点,使的面积最大?最大面积是多少?
3、在平面直角坐标系中,抛物线的对称轴为.
求的值及抛物线与轴的交点坐标;
若抛物线与轴有交点,且交点都在点,之间,求的取值范围.
4、已知的半径是.弦.
求圆心到的距离;
弦两端在圆上滑动,且保持,的中点在运动过程中构成什么图形,请说明理由.
5、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点.求证:.
6、每年