基本信息
文件名称:2024四川省万源市中考数学练习题【名师系列】附答案详解.docx
文件大小:528.35 KB
总页数:29 页
更新时间:2025-05-28
总字数:约8.78千字
文档摘要

四川省万源市中考数学练习题

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=25°,则∠OCD=(?????).

A.50° B.40° C.70° D.30°

2、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()

A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°

3、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为(???????)

A. B. C. D.

4、已知△ABC为等腰三角形,若BC=6,且AB,AC为方程x2﹣8x+m=0两根,则m的值等于()

A.12 B.16 C.﹣12或﹣16 D.12或16

5、把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为()

A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,10

二、多选题(5小题,每小题3分,共计15分)

1、如图,AB为的直径,,BC交于点D,AC交于点E,.下列结论正确的是(???????)

A. B.

C. D.劣弧是劣弧的2倍

2、下列说法中,不正确的是()

A.三点确定一个圆

B.三角形有且只有一个外接圆

C.圆有且只有一个内接三角形

D.相等的圆心角所对的弧相等

3、已知:如图,△ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB、AC于点D、E.连接DE、OE.下列结论中正确的结论是()

A.BC=2DE B.D点到OE的距离不变

C.BD+CE=2DE D.AE为外接圆的切线

4、若为圆内接四边形,则下列哪个选项可能成立(???????)

A. B.

C. D.

5、如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,则下列结论中正确的是()

A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、若代数式有意义,则x的取值范围是_____.

2、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.则S与x的函数关系式是____________,自变量x的取值范围是____________.

3、关于的方程有两个不相等的实数根,则的取值范围是________.

4、如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.

5、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是____________.

四、解答题(6小题,每小题10分,共计60分)

1、为帮助人民应对疫情,某药厂下调药品的价格某种药品经过连续两次降价后,由每盒元下调至元,已知每次下降的百分率相同.

(1)求这种药品每次降价的百分率是多少?

(2)已知这种药品的成本为元,若按此降价幅度再一次降价,药厂是否亏本?

2、在平面直角坐标系中,设二次函数(m是实数).

(1)当时,若点在该函数图象上,求n的值.

(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?

(3)已知点,都在该二次函数图象上,求证:.

3、已知:如图,△ABC中,AB=AC,AB>BC.

求作:线段BD,使得点D在线段AC上,且∠CBD=∠BAC.

作法:①以点A为圆心,AB长为半径画圆;

②以点C为圆心,BC长为半径画弧,交⊙A于点P(不与点B重合);

③连接BP交AC于点D.

线段BD就是所求作的线段.

(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);

(2)完成下面的证明.

证明:连接PC.

∵AB=AC,

∴点C在⊙A上.

∵点P在⊙A上,

∴∠CPB=∠BAC.()(填推理的依据)

∵BC=P