湖北省安陆市中考数学考试综合练习
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、由二次函数,可知(???????)
A.其图象的开口向下 B.其图象的对称轴为直线x=-3
C.其最小值为1 D.当x3时,y随x的增大而增大
2、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()
A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°
3、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是(???????)
A. B.
C. D.
4、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1,则下列说法中正确的是(???????)
A.点火后1s和点火后3s的升空高度相同
B.点火后24s火箭落于地面
C.火箭升空的最大高度为145m
D.点火后10s的升空高度为139m
5、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90°,得到,则点的坐标为(???????).
A. B.
C. D.
二、多选题(5小题,每小题3分,共计15分)
1、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:
x
…
-1
0
1
2
3
…
y
…
3
0
-1
m
3
…
①抛物线开口向下;②抛物线的对称轴为直线;③方程的两根为0和2;④当时,x的取值范围是或.正确的是(???????)
A.① B.② C.③ D.④
2、已知关于的方程,下列说法不正确的是(???????)
A.当时,方程无解 B.当时,方程有两个相等的实数根
C.当时,方程有两个相等的实数根 D.当时,方程有两个不相等的实数根
3、如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,则下列结论中正确的是()
A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°
4、如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中正确的是(???????)
A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE
5、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()
A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、对任意实数a,b,定义一种运算:,若,则x的值为_________.
2、袋中有五颗球,除颜色外全部相同,其中红色球三颗,标号分别为1,2,3,绿色球两颗,标号分别为1,2,若从五颗球中任取两颗,则两颗球的标号之和不小于4的概率为__.
3、如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.
4、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.则S与x的函数关系式是____________,自变量x的取值范围是____________.
5、二次函数的部分图象如图所示,由图象可知,方程的解为___________________;不等式的解集为___________________.
四、解答题(6小题,每小题10分,共计60分)
1、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).
(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,PQ与⊙O相切?
2、用适当的方法解下列方程:
(1)??????????????????????????????????????(