基本信息
文件名称:2024年山东省高密市中考数学过关检测试卷附答案详解【A卷】.docx
文件大小:583.63 KB
总页数:30 页
更新时间:2025-05-28
总字数:约1.01万字
文档摘要

山东省高密市中考数学过关检测试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、已知关于x的方程有一个根为1,则方程的另一个根为(???????)

A.-1 B.1 C.2 D.-2

2、如图,在中,,,,以点为圆心,为半径的圆与所在直线的位置关系是(???)

A.相交 B.相离 C.相切 D.无法判断

3、设方程的两根分别是,则的值为(???????)

A.3 B. C. D.

4、二次函数的图像如图所示,现有以下结论:(1):(2);(3),(4);(5);其中正确的结论有(???????)

A.2个 B.3个 C.4个 D.5个.

5、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为(???????)

A. B. C. D.

二、多选题(5小题,每小题3分,共计15分)

1、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是(???????)

A.23 B.32 C. D.

2、如图,已知抛物线.将该抛物线在x轴及x轴下方的部分记作C1,将C1沿x轴翻折构成的图形记作C2,将C1和C2构成的图形记作C3.关于图形C3,给出的下列四个结论,正确的是(???????)

A.图形C3恰好经过4个整点(横、纵坐标均为整数的点)

B.图形C3上任意一点到原点的最大距离是1

C.图形C3的周长大于2π

D.图形C3所围成区域的面积大于2且小于π

3、在图形旋转中,下列说法正确的是(??????????)

A.在图形上的每一点到旋转中心的距离相等

B.图形上每一点转动的角度相同

C.图形上可能存在不动的点

D.图形上任意两点的连线与其对应两点的连线长度相等

4、如图,在中,,,点D,E分别为,上的点,且.将绕点A逆时针旋转至点B,A,E在同一条直线上,连接,.下列结论正确的是(???????)

A. B. C. D.旋转角为

5、如图在四边形中,,,,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是(???????)

A.是劣弧的中点 B.是圆的切线

C. D.

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③8a-b+c0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_______(填序号).

2、如图,,,是上的三个点,四边形是平行四边形,连接,,若,则_____.

3、如图,直线y=﹣x+6与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最大值为_____.

4、如图,是的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是____度.

5、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公共点,则m的值为______.

四、解答题(6小题,每小题10分,共计60分)

1、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).

(1)当t为何值时,四边形PQCD为平行四边形?

(2)当t为何值时,PQ与⊙O相切?

2、解方程(组):

(1)

(2);

(3)x(x-7)=8(7-x).

3、正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.

(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;

(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE.请说明理由;

(3)如图②,若点E在上.连接DE,CE,