吉林省桦甸市中考数学题库检测试题打印
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、如图,正方形边长为4,、、、分别是、、、上的点,且.设、两点间的距离为,四边形的面积为,则与的函数图象可能是(???????)
A. B. C. D.
2、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()
A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°
3、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为()
A.12个 B.9个 C.6个 D.3个
4、点A(x,y)在第二象限内,且│x│=2,│y│=3,则点A关于原点对称的点的坐标为(???????)
A.(-2,3) B.(2,-3) C.(-3,2) D.(3,-2)
5、将抛物线C1:y=(x-3)2+2向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为().
A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-2
二、多选题(5小题,每小题3分,共计15分)
1、如图,PA、PB是的切线,切点分别为A、B,BC是的直径,PO交于E点,连接AB交PO于F,连接CE交AB于D点.下列结论正确的是(???????)
A.CE平分∠ACB B. C.E是△PAB的内心 D.
2、如图,是的直径,,交于点,交于点,是的中点,连接.则下列结论正确的是(???????)
A. B. C. D.是的切线
3、如图在四边形中,,,,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是(???????)
A.是劣弧的中点 B.是圆的切线
C. D.
4、下列方程中,有实数根的方程是()
A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0
C.3x2﹣2x﹣1=0 D.x2+2x+4=0
5、下列命题正确的是(???????)
A.菱形既是中心对称图形又是轴对称图形
B.的算术平方根是5
C.如果一个多边形的各个内角都等于108°,则这个多边形是正五边形
D.如果方程有实数根,则实数
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、如果关于x的方程x2﹣3x+k=0(k为常数)有两个相等的实数根,那么k的值是___.
2、五张背面完全相同的卡片上分别写有、、-31、、0.101001001…(相邻两个1间依次多1个0)五个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,抽到有理数的概率是______.
3、若代数式有意义,则x的取值范围是_____.
4、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,.
(1)以点E,O,F,D为顶点的图形的面积为_________;
(2)线段EF的最小值是_________.
5、小亮同学在探究一元二次方程的近似解时,填好了下面的表格:
根据以上信息请你确定方程的一个解的范围是________.
四、解答题(6小题,每小题10分,共计60分)
1、解下列方程:
(1);(2)
2、已知抛物线y=ax2+3ax+c(a≠0)与y轴交于点A
(1)若a>0
①当a=1,c=-1,求该抛物线与x轴交点坐标;
②点P(m,n)在二次函数抛物线y=ax2+3ax+c的图象上,且n-c>0,试求m的取值范围;
(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;
(3)若点A的坐标是(0,1),当-2c<x<c时,抛物线与x轴只有一个公共点,求a的取值范围.
3、用适当的方法解下列方程:
(1)x2-x-1=0;
(2)3x(x-2)=x-2;
(3)x2-2x+1=0;
(4)(x+8)(x+1)=-12.
4、如图①已知抛物线的图象与轴交于、两点(在的左侧),与的正半轴交于点,连结;二次函数的对称轴与轴的交点.
(1)抛物线的对称轴与轴的交点坐标为,点的坐标为_____
(2)若以为圆心的圆与轴和直线都相切,试求出抛物线的解析式:
(3)在(2)的条件下,如图②是的