四川省邛崃市中考数学自我提分评估
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、方程y2=-a有实数根的条件是(???????)
A.a≤0 B.a≥0 C.a0 D.a为任何实数
2、函数y=ax与y=ax2+a(a≠0)在同一直角坐标系中的大致图象可能是()
A. B.
C. D.
3、下列图形中,既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
4、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是(???????)
A. B. C. D.
5、已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是()
A. B.π﹣2 C.1+ D.1﹣
二、多选题(5小题,每小题3分,共计15分)
1、下列图案中,是中心对称图形的是(????????)
A. B.
C. D.
2、下列四个说法中,不正确的是(???)
A.一元二次方程有实数根
B.一元二次方程有实数根
C.一元二次方程有实数根
D.一元二次方程x2+4x+5=a(a≥1)有实数根
3、如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中正确的是(???????)
A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE
4、如图,的内切圆(圆心为点O)与各边分别相切于点D,E,F,连接.以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线.下列说法正确的是(???????)
A.射线一定过点O B.点O是三条中线的交点
C.若是等边三角形,则 D.点O不是三条边的垂直平分线的交点
5、若关于的一元二次方程的两个实数根分别是,且满足,则的值不可能为(???????)
A.或 B. C. D.不存在
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是_____.
2、如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,连接DF.若DF恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为_____.
3、如图,在平面直角坐标系中,等腰直角三角形OAB,∠A=90°,点O为坐标原点,点B在x轴上,点A的坐标是(1,1).若将△OAB绕点O顺时针方向依次旋转45°后得到△OA1B1,△OA2B2,△OA3B3,…,可得A1(,0),A2(1,﹣1),A3(0,﹣),…则A2021的坐标是______.
4、一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是_____.
5、若函数图像与x轴的两个交点坐标为和,则__________.
四、解答题(6小题,每小题10分,共计60分)
1、已知关于的方程有实根.
(1)求的取值范围;
(2)设方程的两个根分别是,,且,试求的值.
2、用指定方法解下列方程:
(1)2x2-5x+1=0(公式法);
(2)x2-8x+1=0(配方法).
3、正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.
(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;
(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE.请说明理由;
(3)如图②,若点E在上.连接DE,CE,已知BC=5,BE=1,求DE及CE的长.
4、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点.
(1)求抛物线的解析式;
(2)连结,在第一象限内的抛物线上,是否存在一点,使的面积最大?最大面积是多少?
5、已知关于的一元二次方程有实数根.
(1)求的取值范围.
(2)若该方程的两个实数根为、,且,求的值.
6、用配方法解方程:.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据平方的非负性可以得出﹣a≥0,再进行整理即可.
【详解】
解:∵方程y2=﹣a有实数根,
∴﹣a≥0(平方具有非负性),
∴a≤0;
故选:A.