基本信息
文件名称:2024-2025学年度山东省即墨市中考数学考试彩蛋押题附完整答案详解(网校专用).docx
文件大小:538.05 KB
总页数:26 页
更新时间:2025-05-28
总字数:约8.06千字
文档摘要

山东省即墨市中考数学考试彩蛋押题

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是(?????)

A. B.

C. D.

2、关于的一元二次方程的两根应为(?????)

A. B., C. D.

3、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90°,得到,则点的坐标为(???????).

A. B.

C. D.

4、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是(???????)

A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850

C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+2000

5、如图,,是上直径两侧的两点.设,则(???????)

A. B. C. D.

二、多选题(5小题,每小题3分,共计15分)

1、下列方程中是一元二次方程的有(????????)

A.

B.

C.

D.

E.

F.

2、已知关于的方程,下列说法不正确的是(???????)

A.当时,方程无解 B.当时,方程有两个相等的实数根

C.当时,方程有两个相等的实数根 D.当时,方程有两个不相等的实数根

3、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的有()

A.2a+b<0 B.abc>0 C.4a﹣2b+c>0 D.a+c>0

4、对于实数a,b,定义运算“※”:,例如:4※2,因为,所以,若函数,则下列结论正确的是(???????)

A.方程的解为,;

B.当时,y随x的增大而增大;

C.若关于x的方程有三个解,则;

D.当时,函数的最大值为1.

5、已知点,下面的说法正确的是(???)

A.点与点关于轴对称,则点的坐标为

B.点绕原点按顺时针方向旋转后到点,则点的坐标为

C.点与点关于原点中心对称,则点的坐标为

D.点先向上平移个单位,再向右平移个单位到点,则点的坐标为

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.

2、一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是_____.

3、如果关于x的方程x2﹣3x+k=0(k为常数)有两个相等的实数根,那么k的值是___.

4、对任意实数a,b,定义一种运算:,若,则x的值为_________.

5、如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为____.

四、解答题(6小题,每小题10分,共计60分)

1、已知的半径是.弦.

求圆心到的距离;

弦两端在圆上滑动,且保持,的中点在运动过程中构成什么图形,请说明理由.

2、冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.

(1)求每个冰墩墩玩偶的进价;

(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.

①求w关于x的函数解析式,并求每周总利润的最大值;

②当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.

3、已知抛物线过点.

(1)求抛物线的解析式;

(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角.

①若A与Q重合,求C到抛物线对称轴的距离;

②若C落在抛物线上,求C的坐标.

4、若二次函数图像经过,两点,求、的值.

5、已知x1,x2是关于x的一元二次方程x2-4mx+4m2-9=0的两实数根.

(1)若这个方程有一个根为-1,求m的值;