基本信息
文件名称:2024-2025学年度山西省介休市中考数学通关题库含答案详解【完整版】.docx
文件大小:575.93 KB
总页数:30 页
更新时间:2025-05-28
总字数:约9.61千字
文档摘要

山西省介休市中考数学通关题库

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:

-2

0

1

3

6

-4

-6

-4

下列各选项中,正确的是A.这个函数的图象开口向下

B.这个函数的图象与x轴无交点

C.这个函数的最小值小于-6

D.当时,y的值随x值的增大而增大

2、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()

A. B.

C. D.

3、如图,点O是△ABC的内心,若∠A=70°,则∠BOC的度数是()

A.120° B.125° C.130° D.135°

4、在同一直角坐标系中,一次函数y=﹣kx+1与二次函数y=x2+k的大致图象可以是()

A. B. C. D.

5、2020年7月20日,宁津县人民政府印发《津县城市生活垃圾分类制度实施方案》的通知,全面推行生活垃圾分类.下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是(???????)

A. B. C. D.

二、多选题(5小题,每小题3分,共计15分)

1、如图,抛物线过点,对称轴是直线.下列结论正确的是(???????)

A.

B.

C.若关于x的方程有实数根,则

D.若和是抛物线上的两点,则当时,

2、下列命题正确的是(???????)

A.垂直于弦的直径平分弦所对的两条弧 B.弦的垂直平分线经过圆心

C.平分弦的直径垂直于弦 D.平分弦所对的两条弧的直线垂直于弦

3、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论中正确的有()

A.abc<0 B.2a+b=0 C.3a+2c>0 D.对于任意x均有ax2﹣a+bx﹣b≥0

4、下列方程中,是一元二次方程的是(???????)

A. B.

C. D.

5、下列四个说法中,不正确的是(???)

A.一元二次方程有实数根

B.一元二次方程有实数根

C.一元二次方程有实数根

D.一元二次方程x2+4x+5=a(a≥1)有实数根

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如图,是等边三角形,点D为BC边上一点,,以点D为顶点作正方形DEFG,且,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.

2、圆锥形冰淇淋的母线长是12cm,侧面积是60πcm2,则底面圆的半径长等于_____.

3、一个直角三角形的两条直角边相差5cm,面积是7cm2,则其斜边的长是___.

4、如图,抛物线的图象与坐标轴交于点、、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是__________.

5、写出一个满足“当时,随增大而减小”的二次函数解析式______.

四、解答题(6小题,每小题10分,共计60分)

1、已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.

(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?

(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.

2、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价为1元,日销售量将减少10千克,现该商场要保证每天盈利8000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

3、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).

(1)当t