基本信息
文件名称:2023年度山东省乳山市中考数学预测复习【典优】附答案详解.docx
文件大小:604.05 KB
总页数:28 页
更新时间:2025-05-28
总字数:约8.86千字
文档摘要

山东省乳山市中考数学预测复习

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()

A. B.

C. D.

2、如图,在中,,,,以点为圆心,为半径的圆与所在直线的位置关系是(???)

A.相交 B.相离 C.相切 D.无法判断

3、已知△ABC为等腰三角形,若BC=6,且AB,AC为方程x2﹣8x+m=0两根,则m的值等于()

A.12 B.16 C.﹣12或﹣16 D.12或16

4、在同一坐标系中,二次函数与一次函数的图像可能是(???????)

A. B.

C. D.

5、已知x1,x2是一元二次方程2x2-3x=5的两个实数根,下列结论错误的是()

A.2-3x1=5 B.(x1-x2)(2x1+2x2-3)=0

C.x1+x2= D.x1x2=

二、多选题(5小题,每小题3分,共计15分)

1、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()

A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17

2、下列语句中不正确的有(???????)

A.等弧对等弦 B.等弦对等弧

C.相等的圆心角所对的弧相等 D.长度相等的两条弧是等弧

3、在图所示的4个图案中不包含图形的旋转的是(???????)

A. B. C. D.

4、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(???????)

A. B. C.3 D.5

5、如图,是的直径,,交于点,交于点,是的中点,连接.则下列结论正确的是(???????)

A. B. C. D.是的切线

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=10,AE=1,则弦CD的长是_____.

2、如图,是等边三角形,点D为BC边上一点,,以点D为顶点作正方形DEFG,且,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.

3、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,.

(1)以点E,O,F,D为顶点的图形的面积为_________;

(2)线段EF的最小值是_________.

4、写出一个满足“当时,随增大而减小”的二次函数解析式______.

5、如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含、代数式表示).

四、解答题(6小题,每小题10分,共计60分)

1、如图,AB是的直径,弦于点E.若,,求弦CD.

2、解方程

(1)(x+1)2﹣64=0

(2)x2﹣4x+1=0

(3)x2+2x-2=0(配方法)

(4)x2-2x-8=0

3、渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.

(1)写出工厂每天的利润元与降价元之间的函数关系.当降价2元时,工厂每天的利润为多少元?

(2)当降价多少元时,工厂每天的利润最大,最大为多少元?

(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?

4、如图,矩形ABCD中,AB=6cm,BC=12cm..点M从点A开始沿AB边向点B以1cm/秒的速度向B点移动,点N从点B开始沿BC边以2cm/秒的速度向点C移动.若M,N分别从A,B点同时出发,设移动时间为t(0t6),△DMN的面积为S.

(1)求S关于t的函数关系式,并求出S的最小值;

(2)当△DMN为直角三角形时,求△DMN的面积.

5、正方形ABCD的四个顶点都在⊙O上,E是⊙O上