吉林省大安市中考数学考前冲刺练习题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、从下列命题中,随机抽取一个是真命题的概率是(???????)
(1)无理数都是无限小数;
(2)因式分解;
(3)棱长是的正方体的表面展开图的周长一定是;
(4)两条对角线长分别为6和8的菱形的周长是40.
A. B. C. D.1
2、点A(x,y)在第二象限内,且│x│=2,│y│=3,则点A关于原点对称的点的坐标为(???????)
A.(-2,3) B.(2,-3) C.(-3,2) D.(3,-2)
3、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是(?????)
A. B.
C. D.
4、如图,五边形是⊙O的内接正五边形,则的度数为(???)
A. B. C. D.
5、如图,正方形边长为4,、、、分别是、、、上的点,且.设、两点间的距离为,四边形的面积为,则与的函数图象可能是(???????)
A. B. C. D.
二、多选题(5小题,每小题3分,共计15分)
1、已知,⊙的半径为5,,某条经过点的弦的长度为整数,则该弦的长度可能为(???????)
A.4 B.6 C.8 D.10
2、二次函数(,,为常数,)的部分图象如图所示,图象顶点的坐标为,与轴的一个交点在点和点之间,给出的四个结论中正确的有(???????)
A. B.
C. D.时,方程有解
3、对于实数a,b,定义运算“※”:,例如:4※2,因为,所以,若函数,则下列结论正确的是(???????)
A.方程的解为,;
B.当时,y随x的增大而增大;
C.若关于x的方程有三个解,则;
D.当时,函数的最大值为1.
4、下列方程中,关于x的一元二次方程有(????????)
A.x2=0 B.ax2+bx+c=0 C.x2-3=x D.a2+a-x=0
E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-9
5、下列关于圆的叙述正确的有()
A.对角互补的四边形是圆内接四边形
B.圆的切线垂直于圆的半径
C.正多边形中心角的度数等于这个正多边形一个外角的度数
D.过圆外一点所画的圆的两条切线长相等
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是_____.
2、关于的方程,k=_____时,方程有实数根.
3、若关于x的一元二次方程的根的判别式的值为4,则m的值为_____.
4、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,.
(1)以点E,O,F,D为顶点的图形的面积为_________;
(2)线段EF的最小值是_________.
5、如图,在一块长为22m,宽为14m的矩形空地内修建三条宽度相等的小路(阴影部分),其余部分种植花草.若花草的种植面积为240m2,则小路的宽为________m.
四、解答题(6小题,每小题10分,共计60分)
1、如图①已知抛物线的图象与轴交于、两点(在的左侧),与的正半轴交于点,连结;二次函数的对称轴与轴的交点.
(1)抛物线的对称轴与轴的交点坐标为,点的坐标为_____
(2)若以为圆心的圆与轴和直线都相切,试求出抛物线的解析式:
(3)在(2)的条件下,如图②是的正半轴上一点,过点作轴的平行线,与直线交于点与抛物线交于点,连结,将沿翻折,的对应点为’,在图②中探究:是否存在点,使得’恰好落在轴上?若存在,请求出的坐标:若不存在,请说明理由.
2、已知关于x的一元二次方程有两个实数根.
(1)求k的取值范围;
(2)若,求k的值.
3、为帮助人民应对疫情,某药厂下调药品的价格某种药品经过连续两次降价后,由每盒元下调至元,已知每次下降的百分率相同.
(1)求这种药品每次降价的百分率是多少?
(2)已知这种药品的成本为元,若按此降价幅度再一次降价,药厂是否亏本?
4、用适当的方法解下列方程:
(1)x2-x-1=0;
(2)3x(x-2)=x-2;
(3)x2-2x+1=0;
(4)(x+8)(x+1)=-12.
5、已知关于x的一元二