基本信息
文件名称:2024-2025学年四川省都江堰市中考数学考前冲刺测试卷含答案详解(B卷).docx
文件大小:953.45 KB
总页数:31 页
更新时间:2025-05-28
总字数:约9.7千字
文档摘要

四川省都江堰市中考数学考前冲刺测试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①4a+2b+c0???????;②y随x的增大而增大;③方程ax2+bx+c=0两根之和小于零;④一次函数y=ax+bc的图象一定不过第二象限,其中正确的个数是(?????)

A.4个 B.3个 C.2个 D.1个

2、2020年7月20日,宁津县人民政府印发《津县城市生活垃圾分类制度实施方案》的通知,全面推行生活垃圾分类.下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是(???????)

A. B. C. D.

3、如图,已知是的两条切线,A,B为切点,线段交于点M.给出下列四种说法:①;②;③四边形有外接圆;④M是外接圆的圆心,其中正确说法的个数是(???????)

A.1 B.2 C.3 D.4

4、下列方程:①;②;③;④;⑤.是一元二次方程的是(???????)

A.①② B.①②④⑤ C.①③④ D.①④⑤

5、二次函数y=ax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是(???????)

A.(﹣1,0)和(5,0) B.(1,0)和(5,0)

C.(0,﹣1)和(0,5) D.(0,1)和(0,5)

二、多选题(5小题,每小题3分,共计15分)

1、若为圆内接四边形,则下列哪个选项可能成立(???????)

A. B.

C. D.

2、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象不可能是()

A. B.

C. D.

3、下列方程中,有实数根的方程是()

A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0

C.3x2﹣2x﹣1=0 D.x2+2x+4=0

4、如图,PA、PB是的切线,切点分别为A、B,BC是的直径,PO交于E点,连接AB交PO于F,连接CE交AB于D点.下列结论正确的是(???????)

A.CE平分∠ACB B. C.E是△PAB的内心 D.

5、如图,如果AB为⊙O的直径,弦CD⊥AE,垂足为E,那么下列结论中,正确的是(???????)

A. B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如果关于的一元二次方程的一个解是,那么代数式的值是___________.

2、如图,是的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是____度.

3、二次函数的部分图象如图所示,由图象可知,方程的解为___________________;不等式的解集为___________________.

4、如果关于的一元二次方程有实数根,那么的取值范围是___.

5、若二次函数的顶点在x轴上,则__________.

四、解答题(6小题,每小题10分,共计60分)

1、已知,是一元二次方程的两个实数根.

(1)求k的取值范围;

(2)是否存在实数k,使得等式成立?如果存在,请求出k的值,如果不存在,请说明理由.

2、端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子、水果粽子、豆沙粽子、红枣粽子(分别用A、B、C、D表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图.

(1)本次参加抽样调查的居民有多少人?

(2)将两幅统计图补充完整;

(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率.

3、如图,直角三角形中,,为中点,将绕点旋转得到.一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使.

(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的面积为,求关于的函数关系式,并求出的最大值.

(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样