江西省瑞昌市中考数学考试历年机考真题集
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、关于x的一元二次方程根的情况,下列说法正确的是(???????)
A.有两个不相等的实数根 B.有两个相等的实数根
C.无实数根 D.无法确定
2、下列一元二次方程中,有两个不相等实数根的是(??)
A. B.x2+2x+4=0 C.x2-x+2=0 D.x2-2x=0
3、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()
A. B. C. D.
4、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为(???????)
A. B. C. D.
5、关于的一元二次方程的两根应为(?????)
A. B., C. D.
二、多选题(5小题,每小题3分,共计15分)
1、下列说法正确的是(???????)
A.圆是轴对称图形,它有无数条对称轴
B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边
C.弦长相等,则弦所对的弦心距也相等
D.垂直于弦的直径平分这条弦,并且平分弦所对的弧
2、下列方程中是一元二次方程的有(????????)
A.
B.
C.
D.
E.
F.
3、等腰三角形三边长分别为a,b,3,且a,b是关于x的一元二次方程x2﹣8x﹣1+m=0的两根,则m的值为()
A.15 B.16 C.17 D.18
4、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:
x
…
-2
-1
0
1
2
…
…
t
m
2
2
n
…
已知.则下列结论中,正确的是(???????)
A.
B.和是方程的两个根
C.
D.(s取任意实数)
5、下列四个说法中,不正确的是(???)
A.一元二次方程有实数根
B.一元二次方程有实数根
C.一元二次方程有实数根
D.一元二次方程x2+4x+5=a(a≥1)有实数根
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、已知抛物线与x轴的一个交点为,则代数式的值为______.
2、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是____________.
3、如图,四边形内接于,若,则_______°.
4、如图,在平面直角坐标系中,等腰直角三角形OAB,∠A=90°,点O为坐标原点,点B在x轴上,点A的坐标是(1,1).若将△OAB绕点O顺时针方向依次旋转45°后得到△OA1B1,△OA2B2,△OA3B3,…,可得A1(,0),A2(1,﹣1),A3(0,﹣),…则A2021的坐标是______.
5、对于任意实数,抛物线与轴都有公共点.则的取值范围是_______.
四、解答题(6小题,每小题10分,共计60分)
1、已知抛物线.
(1)该抛物线的对称轴为;
(2)若该抛物线的顶点在x轴上,求抛物线的解析式;
(3)设点M(m,),N(2,)在该抛物线上,若>,求m的取值范围.
2、如图,⊙O的半径弦AB于点C,连结AO并延长交⊙O于点E,连结EC.已知,.
(1)求⊙O半径的长;
(2)求EC的长.
3、如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.
(1)求抛物线的解析式;
(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;
(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;
(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
4、如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A的度数.
5、正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.
(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;
(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE.请说明理由;
(3)如图②,若点E在上.连接DE,CE,已知BC=5,BE=1,求DE及CE的长.
6、已知关于x的方