江苏省昆山市中考数学模考模拟试题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是()
A. B.π﹣2 C.1+ D.1﹣
2、2020年7月20日,宁津县人民政府印发《津县城市生活垃圾分类制度实施方案》的通知,全面推行生活垃圾分类.下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是(???????)
A. B. C. D.
3、在同一直角坐标系中,一次函数y=﹣kx+1与二次函数y=x2+k的大致图象可以是()
A. B. C. D.
4、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=25°,则∠OCD=(?????).
A.50° B.40° C.70° D.30°
5、将抛物线先绕坐标原点旋转,再向右平移个单位长度,所得抛物线的解析式为(????????)
A. B.
C. D.
二、多选题(5小题,每小题3分,共计15分)
1、对于二次函数,下列说法不正确的是(???????)
A.图像开口向下
B.图像的对称轴是直线
C.函数最大值为0
D.随的增大而增大
2、在中,,,且关于x的方程有两个相等的实数根,以下结论正确的是(???????)
A.AC边上的中线长为1 B.AC边上的高为
C.BC边上的中线长为 D.外接圆的半径是2
3、(多选)若数使关于的一元二次方程有两个不相等的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为(???????)
A.1 B.3 C.5 D.7
4、以图①(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图②的有(???????)
A.只要向右平移1个单位 B.先以直线为对称轴进行翻折,再向右平移1个单位
C.先绕着点O旋转,再向右平移1个单位 D.绕着的中点旋转即可
5、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是(?????)
A. B. C. D.
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、将二次函数化成一般形式,其中二次项系数为________,一次项系数为________,常数项为________.
2、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.
3、对任意实数a,b,定义一种运算:,若,则x的值为_________.
4、若点A(m,5)与点B(-4,n)关于原点成中心对称,则m+n=________.
5、如图,在一块长为22m,宽为14m的矩形空地内修建三条宽度相等的小路(阴影部分),其余部分种植花草.若花草的种植面积为240m2,则小路的宽为________m.
四、解答题(6小题,每小题10分,共计60分)
1、如图,抛物线y=a(x﹣2)2+3(a为常数且a≠0)与y轴交于点A(0,).
(1)求该抛物线的解析式;
(2)若直线y=kx(k≠0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x22=10时,求k的值;
(3)当﹣4<x≤m时,y有最大值,求m的值.
2、已知抛物线y=mx2-2mx-3.
(1)若抛物线的顶点的纵坐标是-2,求此时m的值;
(2)已知当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,求出这两个定点的坐标.
3、阅读下面内容,并答题:我们知道,计算n边形的对角线条数公式为n(n-3).如果一个n边形共有20条对角线,那么可以得到方程n(n-3)=20.解得n=8或n=-5(舍去),∴这个n边形是八边形.根据以上内容,问:
(1)若一个多边形共有9条对角线,求这个多边形的边数;
(2)小明说:“我求得一个n边形共有10条对角线”,你认为小明同学的说法正确吗?为什么?
4、解下列方程:
(1);(2)
5、如图,已知点在上,点在外,求作一个圆,使它经过点,并且与相切于点.(要求写出