云南省泸水市中考数学考试综合练习
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()
A.(50﹣2x)(40﹣2x)=3000 B.(50+2x)(40+2x)=3000
C.(50﹣x)(40﹣x)=3000 D.(50+x)(40+x)=3000
2、定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数)是关于x的方程,则它的根的情况是(???????)
A.有一个实根 B.有两个不相等的实数根 C.有两个相等的实数根 D.没有实数根
3、在同一坐标系中,二次函数与一次函数的图像可能是(???????)
A. B.
C. D.
4、下列说法正确的是(???????)
①近似数精确到十分位;
②在,,,中,最小的是;
③如图所示,在数轴上点所表示的数为;
④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;
⑤如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点.
A.1 B.2 C.3 D.4
5、将抛物线C1:y=(x-3)2+2向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为().
A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-2
二、多选题(5小题,每小题3分,共计15分)
1、下列说法中,不正确的是(???????)
A.平分一条直径的弦必垂直于这条直径
B.平分一条弧的直线垂直于这条弧所对的弦
C.弦的垂线必经过这条弦所在圆的圆心
D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心
2、如图,为的直径延长线上的一点,与相切,切点为,是上一点,连接.已知,则下列结论正确的为(???????)
A.与相切 B.四边形是菱形
C. D.
3、如图,在的网格中,点,,,,均在网格的格点上,下面结论正确的有(???????)
A.点是的外心 B.点是的外心
C.点是的外心 D.点是的外心
4、若为圆内接四边形,则下列哪个选项可能成立(???????)
A. B.
C. D.
5、下列说法中,不正确的是()
A.三点确定一个圆
B.三角形有且只有一个外接圆
C.圆有且只有一个内接三角形
D.相等的圆心角所对的弧相等
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、已知关于的一元二次方程,有下列结论:
①当时,方程有两个不相等的实根;
②当时,方程不可能有两个异号的实根;
③当时,方程的两个实根不可能都小于1;
④当时,方程的两个实根一个大于3,另一个小于3.
以上4个结论中,正确的个数为_________.
2、一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是_____.
3、如图,已知P是函数y1图象上的动点,当点P在x轴上方时,作PH⊥x轴于点H,连接PO.小华用几何画板软件对PO,PH的数量关系进行了探讨,发现PO﹣PH是个定值,则这个定值为_____.
4、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_____.
5、如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=10,AE=1,则弦CD的长是_____.
四、解答题(6小题,每小题10分,共计60分)
1、水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg.
(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;
(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;
(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元.若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元.
2、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点.
(1)求二次函数的解