基本信息
文件名称:2025年广东省英德市中考数学自我提分评估【重点】附答案详解.docx
文件大小:505.22 KB
总页数:27 页
更新时间:2025-05-28
总字数:约9.3千字
文档摘要

广东省英德市中考数学自我提分评估

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()

A.55° B.65° C.60° D.75°

2、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为()

A.12个 B.9个 C.6个 D.3个

3、若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()

A.1 B.﹣2 C.﹣1 D.2

4、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()

A. B.

C. D.

5、二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④(为实数).其中结论正确的个数为(???????)

A.1个 B.2个 C.3个 D.4个

二、多选题(5小题,每小题3分,共计15分)

1、已知:如图,△ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB、AC于点D、E.连接DE、OE.下列结论中正确的结论是()

A.BC=2DE B.D点到OE的距离不变

C.BD+CE=2DE D.AE为外接圆的切线

2、已知二次函数y=x2-4x+a,下列说法正确的是()

A.当x<1时,y随x的增大而减小

B.若图象与x轴有交点,则a≥-4

C.当a=3时,不等式x2-4x+a<0的解集是1<x<3

D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3

3、已知,⊙的半径为5,,某条经过点的弦的长度为整数,则该弦的长度可能为(???????)

A.4 B.6 C.8 D.10

4、二次函数的部分图象如图所示,图象过点(-3,0),对称轴为.下列结论正确的是(???????)

A.

B.

C.

D.若(-5,),(2,)是抛物线上两点,则

5、已知抛物线(,,是常数,)经过点,,当时,与其对应的函数值.下列结论正确的是(???????)

A. B.

C. D.关于的方程有两个不等的实数根

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、不透明袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黄球的概率是_______.

2、如图,I是△ABC的内心,∠B=60°,则∠AIC=_____.

3、将二次函数化成一般形式,其中二次项系数为________,一次项系数为________,常数项为________.

4、《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程___________.

5、若关于x的一元二次方程的根的判别式的值为4,则m的值为_____.

四、解答题(6小题,每小题10分,共计60分)

1、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y件.

(1)求y与x的函数关系式并直接写出自变量x的取值范围;

(2)设每月的销售利润为W,请直接写出W与x的函数关系式.

2、如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.

3、已知关于x的一元二次方程有两个实数根.

(1)求k的取值范围;

(2)若,求k的值.

4、正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.

(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;

(2)在(1