基本信息
文件名称:标准偏差计算.ppt
文件大小:8.31 MB
总页数:50 页
更新时间:2025-05-29
总字数:约6.87千字
文档摘要

第二节标准差一、标准差的意义用平均数作为样本的代表,其代表性的强弱受样本资料中各观测值变异程度的影响。仅用平均数对一个资料的特征作统计描述是不全面的,还需引入一个表示资料中观测值变异程度大小的统计量。第30页,共50页,星期日,2025年,2月5日全距(极差)是表示资料中各观测值变异程度大小最简便的统计量。但是全距只利用了资料中的最大值和最小值,并不能准确表达资料中各观测值的变异程度,比较粗略。当资料很多而又要迅速对资料的变异程度作出判断时,可以利用全距这个统计量。第31页,共50页,星期日,2025年,2月5日为了准确地表示样本内各个观测值的变异程度,人们首先会考虑到以平均数为标准,求出各个观测值与平均数的离差,(),称为离均差。虽然离均差能表示一个观测值偏离平均数的性质和程度,但因为离均差有正、有负,离均差之和为零,即()=0,因而不能用离均差之和Σ()来表示资料中所有观测值的总偏离程度。第32页,共50页,星期日,2025年,2月5日为了解决离均差有正、有负,离均差之和为零的问题,可先求离均差的绝对值并将各离均差绝对值之和除以观测值个数n求得平均绝对离差,即Σ||/n。虽然平均绝对离差可以表示资料中各观测值的变异程度,但由于平均绝对离差包含绝对值符号,使用很不方便,在统计学中未被采用。第33页,共50页,星期日,2025年,2月5日我们还可以采用将离均差平方的办法来解决离均差有正、有负,离均差之和为零的问题。先将各个离均差平方,即()2,再求离均差平方和,即,简称平方和,记为SS;由于离差平方和常随样本大小而改变,为了消除样本大小的影响,用平方和除以样本大小,即,求出离均差平方和的平均数;第34页,共50页,星期日,2025年,2月5日为了使所得的统计量是相应总体参数的无偏估计量,统计学证明,在求离均差平方和的平均数时,分母不用样本含量n,而用自由度n-1,于是,我们采用统计量表示资料的变异程度。统计量称为均方(meansquare缩写为MS),又称样本方差,记为S2,即S2=第35页,共50页,星期日,2025年,2月5日关于标准偏差计算第1页,共50页,星期日,2025年,2月5日平均数是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。平均数主要包括有:算术平均数(arithmeticmean)中位数(median)众数(mode)几何平均数(geometricmean)调和平均数(harmonicmean)第2页,共50页,星期日,2025年,2月5日一、算术平均数算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数,记为。算术平均数可根据样本大小及分组情况而采用直接法或加权法计算。(一)直接法主要用于样本含量n≤30以下、未经分组资料平均数的计算。第3页,共50页,星期日,2025年,2月5日设某一资料包含n个观测值:x1、x2、…、xn,则样本平均数可通过下式计算:其中,Σ为总和符号;表示从第一个观测值x1累加到第n个观测值xn。当在意义上已明确时,可简写为Σx,(3-1)式可改写为:第4页,共50页,星期日,2025年,2月5日【例3.1