基本信息
文件名称:2023年河北省高碑店市中考数学自我提分评估附答案详解【综合题】.docx
文件大小:827.37 KB
总页数:35 页
更新时间:2025-05-29
总字数:约9.29千字
文档摘要

河北省高碑店市中考数学自我提分评估

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题25分)

一、单选题(5小题,每小题2分,共计10分)

1、在同一坐标系中,二次函数与一次函数的图像可能是(???????)

A. B.

C. D.

2、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()

A. B.

C. D.

3、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为()

A.8 B. C. D.

4、中国有悠久的金石文化,印信是金石文化的代表之一.南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印.它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体.从正面看该几何体得到的平面图形是()

A. B. C. D.

5、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=25°,则∠OCD=(?????).

A.50° B.40° C.70° D.30°

二、多选题(5小题,每小题3分,共计15分)

1、下列各数不是方程解的是(???????)

A.6 B.2 C.4 D.0

2、已知二次函数y=x2-4x+a,下列说法正确的是()

A.当x<1时,y随x的增大而减小

B.若图象与x轴有交点,则a≥-4

C.当a=3时,不等式x2-4x+a<0的解集是1<x<3

D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3

3、二次函数y=ax2+bx+c的部分对应值如下表:以下结论正确的是(???????)

x

﹣3

﹣2

0

1

3

5

y

7

0

﹣8

﹣9

﹣5

7

A.抛物线的顶点坐标为(1,﹣9);

B.与y轴的交点坐标为(0,﹣8);

C.与x轴的交点坐标为(﹣2,0)和(2,0);

D.当x=﹣1时,对应的函数值y为﹣5.

4、如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转a度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:其中正确的有(????????).

A.∠CDF=a度

B.A1E=CF

C.DF=FC

D.BE=BF

5、下列图案中,是中心对称图形的是(????????)

A. B.

C. D.

第Ⅱ卷(非选择题75分)

三、填空题(5小题,每小题3分,共计15分)

1、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.

2、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是__________.

3、如果关于的一元二次方程有实数根,那么的取值范围是___.

4、如图,在甲,,,,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为__________(结果保留).

5、如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.

四、简答题(2小题,每小题10分,共计20分)

1、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点.

(1)求二次函数的解析式;

(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、.直线与直线交于点,当时,求值.

2、某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.

(1)求y关于x的一次函数解析式;

(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.

五、解答题(4小题,每小题10分,共计40分)

1、如图,在平面直角坐标系中,△ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO=2AO.

(1)求直线AC的解析式;

(2)若P为直线AC上一个动点,过点P作PD⊥x轴,垂足为D,PD与直线AB交于点Q,设△CPQ的面积为S(),点P的横坐标为a,求S与a的函数关系式;

(3)点M的坐标为,当△MA