基本信息
文件名称:徐州市贾汪区建平中学高中数学二平面与平面的垂直教案2.docx
文件大小:23.75 KB
总页数:6 页
更新时间:2025-05-29
总字数:约1.45千字
文档摘要

学必求其心得,业必贵于专精

学必求其心得,业必贵于专精

学必求其心得,业必贵于专精

备课时间

2017年月日

主备人:

上课时间

第周周月日

班级节次

课题

平面与平面的垂直2

总课时数

第节

教学目标

1.两个平面平行的判定定理及性质定理

2.两个平面垂直的判定定理及性质定理

教学重难点

两个平面平行的判定定理及性质定理的灵活应用

两个平面垂直的判定定理及性质定理的灵活应用

教学参考

教参,教材

授课方法

讲练结合

教学辅助手段

多媒体

专用教室

教学过程设计

二次备课

一、要点回顾

1.两个平面平行的判定定理:性质定理:

2.两个平面垂直的判定定理:性质定理:

3.二面角定义:

二、合作交流

例1ABCC1A1B1

A

B

C

C1

A1

B1

E

D

1.判断下列命题是否正确,并说明理由:

(1)若平面α内的两条直线分别与平面β平行,则α与β平行;

(2)若平面α内的有无数条直线与平面β平行,则α与β平行;

(3)平行于同一条直线的两个平面平行;

(4)过已知平面外一点,有且仅有一个平面与已知平面平行;

(5)过已知平面外一条直线,必能作出与已知平面平行的平面。

教学过程设计

二次备课

例2已知PA⊥平面ABC,AB是⊙O的直径,C是⊙O上

的任一点。求证:平面PAC⊥平面PBC.

O

O

A

B

P

C

课堂练习

1。下列命题错误的有______

A。一条直线在两个平行平面中的一个平面内,则在另一个平面内必有一条直线与这条直线平行;

B。两条平行线中的一条垂直于两个平行平面中的一个平面,则另一条一定垂直于另一个平面;

C。有两边平行,另两边分别在两平行平面内的四边形是平行四边形;

D。若两个平面平行,则分别在这两平面内的两条直线互相平行。

2。判断下列命题是否正确,并说明理由:

①若α⊥γ,β⊥γ,则α//β

②若α⊥β,β⊥γ,则α⊥γ

③若α//α1,β//β1,α⊥β,则α1⊥β1

2.过正方形ABCD的顶点A作线段PA垂直于平面ABCD,如果PA=AB,那么平面ABP与平面CDP所成的锐二面角为_________

.

方法小结

证明面面垂直的方法:

(1)。利用两平面垂直的定义,作出两相交平面所成二面角的平面角,并求其大小为90°

(2).利用判定定理,在一个平面内找一条直线垂直于另一个平面.

3.设m、n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题:

①若m⊥α,n//α,则m⊥n;②若α//β,β//γ,m⊥α,则m⊥γ;

③若m//α,n//α,则m//n;④若α⊥γ,β⊥γ,则α//β。

其中正确命题的序号是_________

课外作业

教学小结