福建省邵武市中考数学练习题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、下表记录了一名球员在罚球线上投篮的结果:
投篮次数
50
100
150
200
250
400
500
800
投中次数
28
63
87
122
148
242
301
480
投中频率
0.560
0.630
0.580
0.610
0.592
0.605
0.602
0.600
根据频率的稳定性,估计这名球员投篮一次投中的概率约是()
A.0.560 B.0.580 C.0.600 D.0.620
2、如图,几何体的左视图是()
A. B. C. D.
3、已知⊙O的半径为4,点O到直线m的距离为d,若直线m与⊙O公共点的个数为2个,则d可取()
A.5 B.4.5 C.4 D.0
4、下列说法正确的是()
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.
B.若AC、BD为菱形ABCD的对角线,则的概率为1.
C.概率很小的事件不可能发生.
D.通过少量重复试验,可以用频率估计概率.
5、二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差(???????)
A.与p、q的值都有关 B.与p无关,但与q有关
C.与p、q的值都无关 D.与p有关,但与q无关
二、多选题(5小题,每小题3分,共计15分)
1、已知关于的方程,下列说法不正确的是(???????)
A.当时,方程无解 B.当时,方程有两个相等的实数根
C.当时,方程有两个相等的实数根 D.当时,方程有两个不相等的实数根
2、若关于的一元二次方程的两个实数根分别是,且满足,则的值不可能为(???????)
A.或 B. C. D.不存在
3、下面一元二次方程的解法中,不正确的是(???????)
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x两边同除以x,得x=1
4、观察如图推理过程,错误的是(???????)
A.因为的度数为,所以
B.因为,所以
C.因为垂直平分,所以
D.因为,所以
5、下列方程不适合用因式方程解法解的是(???????)
A.x2-3x+2=0 B.2x2=x+4
C.(x-1)(x+2)=70 D.x2-11x-10=0
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、在平面直角坐标系中,二次函数过点(4,3),若当0≤x≤a时,y有最大值7,最小值3,则a的取值范围是_____.
2、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是_____.
3、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.
4、如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为_____.
5、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.
四、简答题(2小题,每小题10分,共计20分)
1、2022年冬奥会在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).
(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,销售这款文化衫每天所获得