广东省高州市中考数学能力检测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G,H三点刚好在金属框上,则该金属框的半径是()
A. B. C. D.
2、抛物线的对称轴为直线.若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()
A. B. C. D.
3、5个红球、4个白球放入一个不透明的盒子里,从中摸出6个球,恰好红球与白球都摸到,这个事件()
A.不可能发生 B.可能发生 C.很可能发生 D.必然发生
4、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()
A.50° B.60° C.40° D.30°
5、下列各点中,关于原点对称的两个点是()
A.(﹣5,0)与(0,5) B.(0,2)与(2,0)
C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)
二、多选题(5小题,每小题3分,共计15分)
1、如图,是的直径,,是上的点,且,分别与,相交于点,,则下列结论一定成立的是(???????)
A. B. C.平分
D. E.
2、以图①(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图②的有(???????)
A.只要向右平移1个单位 B.先以直线为对称轴进行翻折,再向右平移1个单位
C.先绕着点O旋转,再向右平移1个单位 D.绕着的中点旋转即可
3、下列方程中,是一元二次方程的是(???????)
A. B.
C. D.
4、观察如图推理过程,错误的是(???????)
A.因为的度数为,所以
B.因为,所以
C.因为垂直平分,所以
D.因为,所以
5、如图,在中,,,点D,E分别为,上的点,且.将绕点A逆时针旋转至点B,A,E在同一条直线上,连接,.下列结论正确的是(???????)
A. B. C. D.旋转角为
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、若函数图像与x轴的两个交点坐标为和,则__________.
2、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.
3、定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是______.
4、一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是_____.
5、若代数式有意义,则x的取值范围是_____.
四、简答题(2小题,每小题10分,共计20分)
1、如图,在中,,,,为的中点.动点从点出发以每秒个单位向终点匀速运动(点不与、、重合),过点作的垂线交折线于点.以、为邻边构造矩形.设矩形与重叠部分图形的面积为,点的运动时间为秒.
(1)直接写出的长(用含的代数式表示);
(2)当点落在的边上时,求的值;
(3)当矩形与重叠部分图形不是矩形时,求与的函数关系式,并写出的取值范围;
(4)沿直线将矩形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合条件的的值.
2、某校一棵大树发生一定的倾斜,该树与地面的夹角.小明测得某时大树的影子顶端在地面处,此时光线与地面的夹角;又过了一段时间,测得大树的影子顶端在地面处,此时光线与地面的夹角,若米,求该树倾斜前的高度(即的长度).(结果保留一位小数,参考数据:,,,).
五、解答题(4小题,每小题10分,共计40分)
1、如图,在中,,,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G.
(1)依题意补全图形;
(2)求的度数;
(3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明.
2、若二次函数图像经过,两点,求、的值.
3、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点.求证:.
4、如图,已知抛物线的顶点坐标为M,与x轴相交