海南省东方市中考数学考试综合练习
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、下列事件中,是必然事件的是()
A.实心铁球投入水中会沉入水底
B.车辆随机到达一个路口,遇到红灯
C.打开电视,正在播放《大国工匠》
D.抛掷一枚硬币,正面向上
2、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为()
A.12个 B.9个 C.6个 D.3个
3、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()
A. B. C. D.
4、下列说法错误的是()
A.必然事件发生的概率是1 B.不可能事件发生的概率为0
C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生
5、的边经过圆心,与圆相切于点,若,则的大小等于()
A. B. C. D.
二、多选题(5小题,每小题3分,共计15分)
1、下列命题不正确的是(???)
A.三角形的内心到三角形三个顶点的距离相等
B.三角形的内心不一定在三角形的内部
C.等边三角形的内心,外心重合
D.一个圆一定有唯一一个外切三角形
2、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论正确的有(????????)
A.A、B关于x轴对称; B.A、B关于y轴对称;
C.A、B关于原点对称; D.若A、B之间的距离为4
3、已知二次函数y=x2-4x+a,下列说法正确的是()
A.当x<1时,y随x的增大而减小
B.若图象与x轴有交点,则a≥-4
C.当a=3时,不等式x2-4x+a<0的解集是1<x<3
D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3
4、下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是(???????)组,进行轴对称变换的是(???????).
A. B. C. D.
5、在图所示的4个图案中不包含图形的旋转的是(???????)
A. B. C. D.
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为_____.
2、如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为____.
3、如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.
4、“降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.
5、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.
四、简答题(2小题,每小题10分,共计20分)
1、(1)计算×cos45°﹣()﹣1+20180;
(2)解方程组
2、如图,在△ABC中,AB=AC,点P在BC上.
(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)
(2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.
五、解答题(4小题,每小题10分,共计40分)
1、若二次函数图像经过,两点,求、的值.
2、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.
3、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”
已知点O(0,0),Q(1,0)
(1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_____________;
(2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;
(3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ的“潜力点”时,直接写出b的取值范围
4、在数学活动课上,王老师要求学生将图1所示的3×3